

AJUSTE DE ESPECTROS DE IMPEDANCIA Y ESTIMACIÓN DE PARÁMETROS ELECTROQUÍMICOS MEDIANTE ALGORITMOS GENÉTICOS

PRESENTADO POR:

I.Q. LUCIA GUADALUPE ALVARADO MONTALVO

PARA OBTENER EL GRADO DE:

MAESTRÍA EN ELECTROQUIMICA

Julio, 2005.

Centro de Investigación y Desarrollo Tecnológico en Electroquímica

TESIS REALIZADA POR:

Lucía Guadalupe Alvarado Montalvo

DIRIGIDA POR

Leonardo Bernal Haro

CO-DIRIGIDA POR

Dr. René Antaño López

SINODALES

Dr. Yunny Meas Vong

Presidente

Dr. Luis Arturo Godínez Mora Tovar

Secretario

Dr. Germán Orozco Gamboa Vocal

Dr. René Antaño López Vocal

Dr. Leonardo Bernal Haro

Vocal

Firma

Firma

Firma

Firma

Firma

Uno de los métodos más extensamente aplicado en el análisis de parámetros de Espectroscopia de Impedancia Electroquímica es el método de regresión no-lineal de Levenberg-Marquardt. Aunque es altamente preciso, el éxito en la convergencia del mismo depende de una buena estimación de parámetros iniciales, lo que se convierte en una limitante. En el presente trabajo se propone la utilización de un método alternativo: el ajuste de datos mediante un Algoritmo Genético, método de optimización basado en una analogía entre la optimización de un problema altamente combinatorio y la evolución natural de los seres vivos; este tipo de Algoritmo tiene la virtud de no necesitar buenos valores iniciales para converger hacia el mejor ajuste, subsanando las deficiencias del Método de Levenberg-Marquardt. La comparación de ambos métodos se llevó a cabo en tres etapas: la primera, para el ajuste de datos de 7 circuitos equivalentes teóricos; la segunda, para los mismos espectros con un error aleatorio añadido de 5%; y la tercera parte para datos experimentales reales.

ABSTRACT

One of the methods more widely applied in the analysis of parameters of Electrochemical Impedance Spectroscopy is the method of no-lineal regression of Levenberg-Marquardt. Although it is highly precise, the success in its convergence of strongly depends on a good estimate of initial parameters, a characteristic that limitation. The present work suggests the use of an alternative method: the adjustment of data by means of a Genetic Algorithm, a method of optimization that is based on an analogy to the optimization of a highly randomized problem and the natural evolution of the living beings. This type of Algorithm has the virtue of not needing good initial values to converge towards the best adjustment, correcting in this way the deficiencies of the Method of Levenberg-Marquardt. The comparison of both methods was carried out in three stages: the first one, consisted on the adjustment of the data of 7 theoretical equivalent circuits; the second involved the same spectra with an added random error of 5%; and the third part employed real experimental data.

Este trabajo fue realizado en el Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), bajo la dirección del Dr. Leonardo Bernal Haro y la co-dirección del Dr. René Antaño López.

PRESENTACIÓN

El presente trabajo se realizó como una necesidad por encontrar una vía alterna de ajuste de datos en espectros de impedancia electroquímica. Ajuste que hasta este momento se realiza en la mayoría de los casos por el método ya tradicional de Levenberg-Marquardt, que aunque es muy exacto, tiene debilidades que han lo limitado en el estudio mecanismos de reacciones electroquímicas vía circuitos equivalentes.

Es por ello que teniendo la hipótesis de que los Algoritmos Genéticos pueden llegar a superar las debilidades hasta ahora encontradas por el método tradicional, nos hemos planteado el objetivo de generar y proponer un método de ajuste para la estimación de parámetros de espectros de impedancia.

A lo largo del trabajo el lector podrá conocer el panorama alrededor de los problemas que se presentan con el método tradicional, y poco a poco comprobará que el ajuste por Algoritmos Genéticos efectivamente puede subsanar dichos problemas.

Esperamos que encuentre una respuesta a su caso particular y que pueda aplicar el método propuesto para aquello que no ha conseguido con el método tradicional.

¡Mucho éxito!

Los autores

AGRADECIMIENTOS

Antes que nada quiero agradecerle a Dios por prestarme vida y darme los medios para haber logrado todo lo que tengo hasta el día de hoy. A Él y a mi familia dedico este trabajo, pues todos en su momento me tendieron la mano.

A CONACYT por otorgarme la beca para sacar adelante esta maestría. Sigan apoyando a todas esas personas que tienen ganas de superación, porque existen muchos talentos en nuestro país, que muchas veces por falta de recursos se les va la oportunidad. Gracias y felicidades por su labor.

Al Dr. Eduardo Castaño (UAQ) y nuestro compañero M.C. Hugo Ruíz (CIDETEQ) por apoyarnos en cuanto a tratamiento estadístico de datos.

A mis asesores quien además fueron amigos, Dr. Leonardo Bernal Haro y Dr. René Antaño. Pasamos por momentos de todo tipo. Gracias por su apoyo, consejos y comprensión en todo momento.

Gracias Papá y Mamá por guiarme y ayudarme a ser la persona que hoy soy, por todos esos momentos en los que me apoyé en ustedes para poder atender lo relacionado a mi maestría (cuidando de mi pequeño) y por su apoyo de siempre. A ti papi, Eduardo Alvarado López, a quien admiro por su honestidad y modo de ver la vida, gracias por enseñarme lo realmente importante en esta vida, lejos de cosas materiales, vanas y todo lo que a menudo en la vida cotidiana nos envuelve y creemos que está el éxito. Saber que en cualquier cosa que hagamos podemos ver por los demás. Aprender a respetar formas de pensar y no preocuparnos tanto por cosas triviales.

A ti mami, María Lucía Montalvo Hernández, a quien también admiro y quiero, por su entereza, perseverancia, entusiasmo y ganas de salir adelante. Gracias por tus consejos y apoyo incondicional.

A mi esposo Carlos Valero Balderas quien se aventuró conmigo primero en el matrimonio, y después en cambiar nuestra vida a otro lugar. Gracias porque muchas veces has sido mi soporte para sacar fuerzas en mis momentos débiles. Gracias por estar siempre ahí cuando te necesito y por apoyarme en mis sueños.

A mis hermanos: León Eduardo, que siempre ha sido mi ejemplo de triunfos, honestidad, lealtad y amor, gracias, siempre estarás en mi corazón hermanito; Wendy Paloma, por su ejemplo de fuerza y porque también ha estado ahí para tenderme la mano, te quiero; y Carolina, por su cariño. Los quiero mucho.

A mi abuelita Esperanza López, quien siempre se ha preocupado por nosotros y me ha ayudado mucho. Mil gracias, la quiero y le agradezco todo. Gracias por confiar en mí.

A dos buenas amigas Claudia Ledezma y Sofía Magdalena Vega Díaz, por ofrecerme su amistad incondicional.

A todos los profesores que han contribuido en algún momento en mi formación y que mucho mas que enseñarme una clase me enseñaron valores: Prof. Jose Luis Rivera Betancourt, Prof. Jose Luis Torres Mendoza, Prof. Pablo Campos, I.Q. José Enrique Morales, Q.F.B. Delta América, Ing. Gerardo Díaz de León, I.Q. José Luis Rojas Gamboa. Mi cariño y respeto para todos ellos.

A mis profesores en CIDETEQ por sus enseñanzas. Mi reconocimiento en especial al Dr. Luis Arturo Godinez Mora Tovar, Dr. Gabriel Trejo y Dr. Yunny Meas Vong, gracias por saber cómo compartir sus conocimientos y ese amor por su trabajo.

A mis amigos y compañeros. Hugo Hernández gracias por estar siempre ahí y por brindarme tu amistad sincera, sabes que es correspondida. Blanca Cristina Jiménez gracias por tu amistad, sencillez y dulzura que te caracteriza. Alondra y Jorge, gracias por ser mis amigos, tienen un lugar en mi corazón.

Gracias a todos los que por 2 años formaron parte de mi vida en CIDETEQ, se les quiere.

Por último, a la personita más importante en mi vida: mi hijo Christopher David, quien a su tierna edad me enseño que no hay títulos, logros, ni cosas materiales que se comparen a la inmensa dicha y fortuna de ser el medio para dar una vida. Gracias por permitirme ser tu mami y por esa sonrisa que me impulsó cuando más lo necesité, te amo mi amor, eres la prueba viviente de que toda mi vida ha valido la pena.

Sinceramente

Lucía Alvarado

Contenido

		Pág.
1.	INTRODUCCION	1
1.1	Objetivo e hipótesis	3
2.	GENERALIDADES	4
2.1	Espectroscopia de impedancia electroquímica, EIS	4
2.1.1	Circuitos equivalentes	6
	Aplicaciones	7
2.2	Algoritmo de Levenberg-Marquardt	8
2.2.1	Principios del Algoritmo de Levenberg-Marquardt	8
2.3	Algoritmos Genéticos	10
2.3.1	Aplicación del Algoritmo Genético al ajuste de Espectros de	10
	Impedancia Electroquímica	
2.3.2	Principios de los Algoritmos Genéticos	11
	Codificación de cromosomas	12
	Generación de la población inicial	12
	Función de evaluación	13
	Selección de las mejores soluciones	13
	Operadores Genéticos	14
	Parámetros para el Algoritmo Genético	15
	Criterio del fin del algoritmo	15

	٠	٠
v	1	1
•	1	г

3	Metodología	17
3.1	Desarrollo experimental	18
3.1.1	Generación de espectros simulados ideales	18
3.1.2	Generación de espectros de circuitos equivalentes teóricos con error aleatorio	20
3.1.3	Medición de espectros a partir de experimentos de laboratorio	20
3.1.3.1	Espectros del par Ferri/Ferrocianuro	21
3.1.3.2	Espectros de la disolución de Ni en H ₂ SO ₄ 0.5 M	22
3.2	Algoritmo de Levenberg-Marquardt	22
3.3	Algoritmo Genético	23
3.3.1	Espectros de circuitos equivalentes teóricos	23
3.3.2	Espectros de circuitos equivalentes teóricos con error aleatorio y espectros experimentales	24
4	RESULTADOS Y DISCUSIÓN	28
4.1	Espectros de circuitos equivalentes teóricos ideales	28
4.1.1	Espectros generados	28
4.1.2	Ajuste con el Algoritmo Levenberg-Marquardt	33
4.1.3	Ajuste con el Algoritmo Genético	37

4.1.4	Discusión	48
4.2	Espectros de circuitos equivalentes teóricos con error aleatorio	48
4.2.1	Espectros generados	48
4.2.2	Ajuste con el Algoritmo de Levenberg-Marquardt	52
4.2.3	Ajuste con el Algoritmo Genético	54
4.2.4	Discusión	57
4.3	Espectros experimentales	72
4.3.1	Sistema Ferri/Ferrocianuro	60
	Obtención de espectros experimentales	60
	Propuesta de circuito equivalente	63
4.3.2	Sistema Ni en H₂SO₄ 0.5 M	65
	Obtención de espectros experimentales	68
	Análisis del sistema	70
	Propuesta de circuito equivalente	71
	Discusión de ajuste de ambos sistemas	77
5	PARÁMETROS ELECTROQUÍMICOS	85
5.1	Sistema Fe(CN) ₆ ³⁻ /Fe(CN) ₆ ⁴⁻	85
5.2	Sistema de disolución de Níquel	87
6	CONCLUSIONES	89

REFERENCIAS

ANEXOS

95

92

- I Intervalos y número de generaciones establecidas para el análisis de los espectros mediante el Algoritmo Genético
- II Descripción e intervalo de frecuencia utilizado para los circuitos equivalentes teóricos analizados
- Resultados del ajuste de circuitos equivalentes teóricos ideales obtenidos por el Algoritmo de Levenberg-Marquardt utilizando valores iniciales dados por subrutina de Equivalent Circuit
- IV Resultados del ajuste de circuitos equivalentes teóricos ideales obtenidos por el Algoritmo de Levenberg-Marquardt con los valores iniciales utilizados como intervalo mínimo en el ajuste de AG
- V Resultados obtenidos del Algoritmo Genehunter al ajustar circuitos equivalentes teóricos ideales
- VI Resultados del ajuste para los circuitos equivalentes teóricos con error aleatorio mediante el Algoritmo de Levenberg-Marquardt
- VII Resultados del ajuste de circuitos equivalentes teóricos ideales con 5% de error aleatorio mediante el Algoritmo Genético Genehunter
- VIII Experimentos de impedancia a 200 rpm del sistema Ferri/Ferrocianuro
- IX Experimentos de impedancia a 400 rpm del sistema Ferri/Ferrocianuro
- **X** Experimentos de impedancia de disolución de Ni, reacción de oxidación
- XI Experimentos de impedancia de disolución de Ni, reacción de reducción
- XII Resultados del ajuste de espectros experimentales del sistema Ferri/Ferrocianuro mediante el Algoritmo de Levenberg-Marquardt y el Algoritmo Genético Genehunter
- XIII Resultados del ajuste de espectros experimentales del sistema Níquel mediante el Algoritmo de Levenberg-Marquardt y el Algoritmo Genético Genehunter

- **XIV** Resultados de parámetros electroquímicos para el sistema Ferri/Ferrocianuro
- **XV** Resultados de parámetros electroquímicos para el sistema de disolución de Ni

INTRODUCCIÓN

La Espectroscopía de Impedancia Electroquímica (EIS) es un método electroquímico en el cual se usa una señal de corriente alterna (voltaje), ésta señal es aplicada a un electrodo y la respuesta (corriente) es medida. El equipo de medición procesa las señales corriente-tiempo y voltaje-tiempo, permitiendo la obtención del espectro de impedancia a diferentes frecuencias como señalan Cottis y col. [1].

La impedancia (Z) es la relación de la diferencia de potencial (E) respecto a la corriente (I):

$$Z = \frac{E}{I} \tag{1}$$

A diferencia de una resistencia R óhmica, la impedancia de un sistema depende de la frecuencia (f) de la señal aplicada, la cual tiene un comportamiento sinusoidal.

$$E(t) = E_0 \operatorname{sen}(\omega t)$$
⁽²⁾

1

En donde t es el tiempo, E_o es la amplitud del voltaje (la cresta) y ω es la frecuencia angular ($\omega = 2\pi f$)

Se puede representar la impedancia mediante un número complejo:

$$Z(\omega) = Z' + jZ'' \tag{3}$$

Donde se muestra la parte real Z'e imaginaria Z'' de la expresión de impedancia total. De esta manera se obtienen espectros de impedancia de Z'' vs Z', llamados gráficos de Nyquist, los cuales son la respuesta obtenida al realizar un estudio de impedancia. A partir de ellos se busca realizar el ajuste de una función de transferencia para la búsqueda de parámetros. Una de las formas para obtener dicha función de transferencia a ajustar es la utilización de circuitos equivalentes, los cuales son una combinación de elementos eléctricos. Estos deben simular la misma respuesta en todas las frecuencias empleadas para el sistema en estudio, y tienen la bondad de poder dar una representación de varios procesos involucrados en el transporte de masa y carga [2]. Los valores característicos de los elementos eléctricos son utilizados subsecuentemente para proporcionar información del sistema electroquímico, una vez hecho un adecuado planteamiento del circuito equivalente.

Uno de los métodos más extensamente aplicado en el análisis de parámetros de EIS, es el de Levenberg-Marquardt, que es un método de regresión no-lineal. Aunque este método es altamente preciso, el éxito en la convergencia depende de una buena estimación de los parámetros iniciales, lo cual, tratándose de circuitos con espectros complicados, puede resultar no muy fácil. De ahí que se proponga en el presente trabajo la utilización de un Algoritmo Genético para la realización del ajuste de espectros, ya que son métodos de optimización que se anticipa, pueden superar las deficiencias del método no lineal clásico. Los principios de ambos métodos y la metodología propuesta para este estudio podrán ser consultados en el segundo capítulo.

La aplicación de Algoritmos genéticos en ajustes de datos de espectroscopía de impedancia electroquímica ya ha sido reportada [3], utilizándolo para obtener parámetros iniciales que posteriormente se trasladan al método definitivo, un método de ajuste no lineal. Como ajuste por sí solos hay reporte de haber sido utilizados en datos de imitancia [4].

En el tercer capítulo se podrán analizar los resultados que se obtuvieron de los distintos experimentos para así llegar al cuarto capítulo con las conclusiones.

1.1 OBJETIVO E HIPÓTESIS

El *objetivo* de este trabajo es el de proponer un método de ajuste de parámetros de curvas de impedancia electroquímica que supere las desventajas actualmente existentes con el método tradicional, Levenberg-Marquardt.

Nuestra *hipótesis* es que un Algoritmo Genético puede ser utilizado como sustituto o complemento del método Levenberg-Marquardt para realizar el ajuste de curvas de impedancia electroquímica. Lo anterior lo basamos en el hecho de que este último trabaja con operadores genéticos, tales como tasa de mutación y cruzamiento, que le permiten evitar el caer en un mínimo local y obtener una optimización deficiente.

CAPÍTULO DOS

GENERALIDADES

2.1 Espectroscopía de impedancia electroquímica, EIS

La técnica donde la impedancia de una celda o un electrodo es medida en función de la frecuencia es comúnmente llamada *espectroscopía de impedancia electroquímica, (electrochemical impedance spectroscopy, EIS).* La Espectroscopía de Impedancia Electroquímica (EIS) es un método electroquímico en el cual se usa una señal de corriente alterna (voltaje); esta señal es aplicada a un electrodo y la respuesta en corriente es medida.

La impedancia es una forma generalizada de resistencia E=I Z. Esta técnica es usada frecuentemente en la evaluación de parámetros de transferencia de carga y para estudios de la estructura de la doble capa, [5].

El concepto de impedancia eléctrica se introdujo por primera vez en 1880 y fue desarrollado poco después en términos de diagramas vectoriales y representaciones complejas por A. E. Kenelly y C. P. Steinmetz [6].

La magnitud y dirección de un vector planar en un sistema ortogonal de ejes puede ser expresado por una suma vectorial de los componentes *a* y *b* a lo largo de los ejes, tal que Z = a + jb. El número imaginario se define como $j \equiv (-1)^{0.5} \equiv \exp(j \pi/2)$ y define una rotación en dirección contraria a las manecillas del reloj de $\pi/2$ con respecto al eje *x*, como se muestra en la Figura. 1. Entonces, la parte real de *Z*, *a*, se encuentra en dirección del eje *x* real, y la parte imaginaria, b, a lo largo de el eje *y*. Es de esta manera que la impedancia adquiere la forma $Z(\omega) = Z' + jZ''$ la cual es una cantidad vectorial capaz de ser graficada en el plano con sus respectivas coordenadas rectangulares o polares. Hablando de coordenadas rectangulares se puede obtener el gráfico de *Z'* vs *Z''*, y en coordenadas polares $Z(\omega) = |Z| \exp(j\theta)$, pudiendo ser convertida a rectangulares a través de la relación de Euler: $\exp(j\theta) = \cos(\theta) + j\sin(\theta)$.

Figura 1. Representación del movimiento del vector E a cada frecuencia *ω*. La flecha indica el sentido de rotación

El trabajar con una corriente alterna nos obliga a considerar la frecuencia, y el voltaje será entonces como un vector rotando y cada uno de estos vectores estará separado por un ángulo de fase, θ . Este ángulo de fase para una resistencia pura será $\theta = 0$, para una capacitancia pura $\theta = \pi/2$ y para combinaciones se tendrá un ángulo de fase intermedio. De esta manera, la variación de impedancia con la frecuencia puede ser analizada mediante varios gráficos, tal como el de Bode en sus dos variantes:

módulo log [Z] vs Frecuencia, Hz o bien θ vs Frecuencia, Hz, así como también los diagramas de Nyquist, -Z' vs Z', [5].

2.1.1 Circuitos equivalentes

Existen en la actualidad 2 tendencias para la formulación de funciones de transferencia que se ajusten a espectros de impedancia electroquímica, EIS:

- 1. A través de circuitos equivalentes
- 2. Mediante modelos electrocinéticos

Una de las desventajas al trabajar con impedancia es principalmente el caer en asociaciones ambiguas al interpretar. De la misma manera, se complica el realizar el análisis mediante circuitos equivalentes, debido a que se pueden asociar una gran cantidad de elementos eléctricos o arreglos capaces de reproducir la respuesta de impedancia. Llegando así a tener incluso varias propuestas de circuitos equivalentes que realicen un buen ajuste a nuestro sistema [6]. Además de que variables tales como la rugosidad del electrodo y su heterogeneidad pueden ser factores significativos en la respuesta de impedancia [5].

Puesto que el objetivo que se persigue en el presente trabajo es el de determinar la robustez del método de algoritmos genéticos para el ajuste de espectros de impedancia, se considerará el enfoque de circuitos equivalentes para realizar el ajuste de datos por ser una manera relativamente sencilla de implementar el método propuesto. No obstante el análisis y conclusiones obtenidos en este trabajo son completamente aplicables al enfoque mediante modelos electrocinéticos, ya que en ambos casos la función a ajustar es la expresión matemática de la impedancia del sistema.

Ahora bien, un circuito equivalente es una combinación de elementos eléctricos que nos puede dar la misma respuesta, a cada frecuencia, que nuestro sistema electroquímico [1]. Mediante el conocimiento de cada uno de sus componentes, podemos relacionarlos con los fenómenos físicos que se presentan en el sistema en

estudio, pudiendo así obtener los valores de los parámetros electroquímicos involucrados. Para obtener las expresiones de impedancia de un circuito equivalente propuesto no hay más que seguir con las reglas aplicadas a los circuitos eléctricos, como la suma de resistencias en serie o paralelo. De esta manera, la suma en serie de impedancia será la suma de los valores individuales de cada parámetro; y en paralelo, el inverso de la impedancia total es la suma de los recíprocos de los parámetros individuales. Así, hay ocasiones en que se decide medir la admitancia, **Y**, la cual no es otra cosa que el inverso de la impedancia, y permite simplificar manipulación matemática, para evitar trabajar con recíprocos en algunos casos. Sin embargo esto es decisión de quien realiza el experimento y el tipo de circuito que se esté proponiendo.

Aquí hay algunos ejemplos de impedancia para cada componente eléctrico:

<u>ELEMENTO</u>	<u>ECUACIÓN DE IMPEDANCIA</u>
Resistor, R	Z = R
Capacitor, C	Z = -j/wC
Inductor, L	Z = j ω L
Warburg, W	Z= 1/Yo(jω) ^{0.5}

Sin embargo, el punto crucial es proponer un circuito equivalente adecuado tal que podamos interpretar sus parámetros en función de los fenómenos interfaciales que ocurren en nuestro sistema electroquímico.

Aplicaciones

La técnica de EIS es muy utilizada, por ejemplo, en estudios de corrosión. Sin embargo, se requiere de un cuidadoso diseño experimental, además de un hardware y software apropiados para el análisis de los datos [7]. Sigue siendo de primordial

importancia el contar con un modelo de circuito equivalente adecuado. Existen varios artículos referentes al uso de la técnica en estudios de corrosión, [8].

Las técnicas de impedancia cada día son más aplicadas en gran variedad de estudios electroquímicos, por su posibilidad de brindarnos información de los mecanismos electroquímicos involucrados.

Una importante ventaja de esta técnica sobre otras es que se pueden usar pequeñas señales de amplitud de potencial sin afectar las propiedades del sistema. Además de la posibilidad de trabajar con conductividades bajas o variables [9].

2.2 Algoritmo de Levenberg-Marquardt

Los espectros se sometieron a análisis mediante el Algoritmo no lineal de Levenberg-Marquardt. El programa utilizado para tal fin, fue el de *Equivalent Circuit* [2], el cual se basa en dicho Algoritmo de regresión no lineal para realizar el ajuste y trabaja en el ambiente MS-DOS. La introducción de datos para su lectura fue establecida en un formato bien definido, como lo indica el manual del programa. Como ya se ha mencionado, este programa requiere tanto de la exacta codificación del circuito equivalente, como de parámetros iniciales apropiados, así que el programa cuenta con una subrutina, la cual se encarga de realizar una descomposición del circuito en circuitos más simples, de tal forma que trata de proveer valores iniciales razonables para el ajuste de los parámetros del circuito.

2.2.1 Principios del Algoritmo de Levenberg-Marquardt

El algoritmo de Levenberg-Marquardt provee una solución numérica a un problema matemático de minimización de suma de cuadrados de funciones generalmente no lineales las cuales dependen en común de un grupo de parámetros. Este algoritmo es un promedio ponderado entre el método de Gauss-Newton y el método del descenso más rápido. Dicha ponderación utiliza el método del descenso rápido hasta que se descubre la convergencia, es en ese momento cuando se aplica el

método de Gauss-Newton, el cual converge más rápidamente. El método de Gauss-Newton tiene la debilidad de requerir de una aproximación inicial precisa de la solución para garantizar la convergencia, y es en este punto en el cual el método de Levenberg-Marquardt utiliza al inicio el método de descenso rápido ya que este método converge sólo linealmente a la solución logrando aproximaciones iniciales suficientemente exactas [10], ver Figura 2.

El método de descenso más rápido determina un mínimo local para una función de varias variables. La conexión entre la minimización de una función **g** y la solución de un sistema de ecuaciones no lineales se debe al hecho de que un sistema de la forma:

 $f_1(x_1, x_2, \dots x_n) = 0$ $f_2(x_1, x_2, \dots x_n) = 0$ $f_n(x_1, x_2, \dots x_n) = 0$

tiene una solución en x= (x_1 , x_2 ,... x_n) justo cuando la función **g** definida por $g((x_1, x_2,...x_n) = \sum_{i=1}^{n} (x_1, x_2,...x_n)$ tiene el valor mínimo cero [11] [12].

Las acciones que realiza el método para encontrar un mínimo local de una función son:

- Evalúa g en una aproximación inicial $x^{(0)} = (x^{(0)}, x^{(0)}, \dots, x^{(0)})$
- Determina una dirección desde x⁽⁰⁾ que origine una disminución del valor de g
- Desplaza una cantidad hacia esta dirección y llama al nuevo vector x⁽¹⁾
- Repite los pasos al ir encontrando nuevos valores de x hasta x⁽ⁿ⁾

Figura 2. Muestra de manera gráfica la aproximación a una solución del método de descenso rápido

2.3 Algoritmos Genéticos

La parte medular de este estudio consiste en el ajuste de los parámetros de los circuitos mencionados mediante la utilización de un Algoritmo Genético. Esta parte será descrita con mayor detalle a continuación.

2.3.1 Aplicación del Algoritmo Genético al Ajuste de Espectros de Impedancia

Un espectro de impedancia está formado por un conjunto de datos experimentales (ω , como variable independiente; Z' y Z", como variables dependientes), que pueden ser modelados mediante un circuito equivalente formado por elementos eléctricos interconectados en alguna configuración determinada (postulada a priori).

El objetivo al utilizar el algoritmo consiste en determinar los valores numéricos de los elementos eléctricos, para de ahí deducir los parámetros electroquímicos del sistema. Se propone la utilización de un programa de optimización (el Algoritmo Genético) partiendo del siguiente principio:

El ajuste de los parámetros del espectro de impedancia se puede asimilar a la minimización de la suma de las diferencias de cuadrados entre los datos experimentales y los resultados del modelo (calculado con el Algoritmo Genético).

2.3.2 Principios de los Algoritmos Genéticos

Los Algoritmos Genéticos son métodos de optimización basados en la analogía entre la evolución natural de los seres vivos y la optimización de problemas altamente combinatorios (véase Figura 3). A partir de una población inicial (un conjunto de posibles soluciones al problema), y aplicando las leyes de selección natural de los individuos más fuertes (la selección estocástica de las mejores soluciones), así como la cruza y eventualmente la mutación (la recombinación de las posibles soluciones por medio de "operadores genéticos") se puede obtener, después de varias generaciones, una población de individuos más fuertes (un conjunto de mejores soluciones), [13]. Un Algoritmo Genético requiere que se definan los aspectos que se describen a continuación.

Figura 3. Comparación entre el proceso de evolución de los seres vivos y el proceso de optimización utilizado por los Algoritmos Genéticos.

Codificación de los cromosomas

En el problema que nos ocupa, cada posible solución corresponde a un conjunto de valores para los elementos del circuito equivalente. Se considerarán valores continuos, definiendo un intervalo posible de valores. El cromosoma de cada individuo (cada posible solución) estará formado por un número de genes igual al número de elementos del circuito, como se ilustra en la Figura 4, en donde Rs, Rp y Cdl son los valores numéricos de los parámetros correspondientes (resistencia de la disolución, resistencia de polarización y capacitancia de la doble capa respectivamente), es decir la solución estará conformada por un valor para cada parámetro o gene, teniendo así una solución que englobará un valor para cada uno de los parámetros que integren el circuito propuesto.

Figura 4. Codificación de los cromosomas para un circuito de tres elementos.

Generación de la población inicial

El programa utilizado genera un conjunto de soluciones iniciales de manera aleatoria dentro de los intervalos definidos para cada cromosoma. Es conveniente que esta población inicial sea lo suficientemente variada para explorar en conjunto las posibles soluciones. Según VanderNoot y col. [4], las pequeñas poblaciones, <20, tienden a dar una convergencia más rápida, sin embargo la búsqueda es incompleta. Por otro lado, las poblaciones >100 realizan una búsqueda más completa, asegurando obtener el mínimo global, sin embargo la velocidad de convergencia es muy baja. Los métodos tradicionales limitan la búsqueda a un sólo punto inicial, de ahí que si no se tiene un buen valor inicial, presentan problemas de convergencia.

Función de evaluación

La función de evaluación, o "fuerza" determinará que tan bueno es el ajuste, y por ende, las soluciones propuestas por el algoritmo. En nuestro caso, deseamos que las soluciones encontradas por el modelo correspondan a circuitos equivalentes cuya respuesta se apegue lo más posible a los datos experimentales. Cada posible solución generada por el Algoritmo Genético tiene una respuesta de *Z*' y *Z*" para el conjunto de frecuencias angulares estudiadas.

Sean ω_1 , ω_2 ,... ω_n las frecuencias angulares, Z'_{1mod}, Z'_{2mod}, ...Z'_{nmod} la parte real de las impedancias del modelo, Z''_{1mod}, Z''_{2mod}, ...Z''_{nmod} la parte imaginaria de las impedancias del modelo, y [Z'_{1exp}, Z'_{2exp}, ...Z'_{nexp}], [Z''_{1exp}, Z''_{2exp}, ...Z''_{nexp}] la parte real e imaginaria de las impedancias experimentales respectivamente.

La función a minimizar es la suma de las diferencias de cuadrados para cada Z' y Z":

Function de evaluación =
$$\sum_{i=1}^{n} (Z'_{exp} - Z'_{mod})^2 + \sum_{i=1}^{n} (Z''_{exp} - Z''_{mod})^2$$
 (4)

Y en una segunda parte= $\sum_{i=1}^{n} \frac{1}{Z'^2 + Z''^2} [(Z'_{exp} - Z'_{mod})^2 + (Z''_{exp} - Z''_{mod})^2]$ (5)

Selección de las mejores soluciones

El Algoritmo Genético selecciona las soluciones, los individuos, que pasan a la siguiente generación en función de los valores de la "fuerza", es decir la función de evaluación; las soluciones que pasan a una siguiente iteración o generación serán las que cumplan con el requisito de minimizar la función de evaluación. La selección se hace de manera estocástica dirigida, de tal forma que los individuos más fuertes (las mejores soluciones) tienen más probabilidades de sobrevivir, sin eliminar por completo la posibilidad de que sobrevivan individuos menos fuertes, evitando así que la convergencia del sistema se dirija y mantenga en un óptimo local. En el caso de ajuste

de curvas de impedancia, las soluciones más fuertes serán aquellas que minimicen el valor de la ecuación (4).

Operadores genéticos

Aunque existen diversos operadores genéticos, los más comunes son la cruza y la mutación.

La cruza es la recombinación de genes entre dos cromosomas (individuos) de la población, y se aplica con una probabilidad relativamente alta (de 0.8 a 1, generalmente), partiendo del principio de que la recombinación de dos buenas soluciones dará como resultado otras dos buenas soluciones (individuos "fuertes")

La mutación es el cambio aleatorio del valor de uno de los genes del cromosoma; como en la evolución natural, se presenta de manera esporádica (con baja probabilidad) y permite salir de los óptimos locales.

Antes de la mutación				Después de la mutación				
Individuo	R _s	R _p	C _{dl}		Individuo	R _s	R _p	C _{dl}
01	7	98	0.005	-	01	7	98	0.006
Gene modificado		Ť		Gene	e modifica	ido	Ť	

Figura 5. Ejemplos del proceso de cruza y mutación que ocurre en los Algoritmos Genéticos.

Parámetros para el Algoritmo Genético.

Como ya se mencionó anteriormente, la tasa de cruzamiento (es decir, la probabilidad de que dos soluciones se recombinen) es relativamente alta, mientras que la tasa de mutación es baja (aunque mayor que en la evolución natural). Otros parámetros importantes son el tamaño de la población y la aplicación o no de políticas elitistas (conservar al mejor individuo de cada generación).

Criterio del fin del Algoritmo.

Existen diversos criterios de terminación de un Algoritmo Genético, como el tiempo de ejecución del mismo, el número de generaciones y la no-evolución después de varias generaciones. En este estudio se emplea el número de generaciones, ya que el tiempo de ejecución depende del estado de ocupación de la máquina, y el criterio de la no-evolución después de varias generaciones puede dar como resultado un óptimo local o tardar demasiado en converger.

Conclusiones parciales?

METODOLOGÍA

Para realizar un trabajo completo sobre la comparación entre el método más utilizado para ajuste de espectros de impedancia electroquímica, método de Levenberg-Marquardt, y el ajuste propuesto mediante Algoritmos genéticos, se realizó el análisis sobre 7 espectros simulados a partir de circuitos equivalentes. Posteriormente, a estos mismos espectros simulados se les añadió un 5% de error aleatorio, porcentaje que es el máximo con el cual podríamos encontrarnos bajo condiciones experimentales bien controladas, es decir, sin la existencia de un factor externo que origine un error sistemático. Como último paso, se obtuvieron espectros derivados de experimentos electroquímicos: la disolución del Níquel en medio de ácido sulfúrico 0.5 M y el estudio del par $[Fe(CN)_6^{3-}]/[Fe(CN)_6^{4-}]$.

3.1 Desarrollo Experimental

3.1.1 Generación de espectros de simulados ideales

Con la finalidad de realizar una adecuada comparación entre los resultados de ajuste que se pudiesen obtener con el método de Levenberg-Marquardt y con el Algoritmo Genético (método que se desea probar), se simularon 7 espectros de impedancia electroquímica los cuales son derivados de circuitos equivalentes. En la simulación de dichos espectros se buscó tener diagramas similares a los comúnmente encontrados como resultado de presencia de fenómenos electroquímicos (descripción en la tabla I). La expresión de impedancia de los circuitos equivalentes respectivos es la misma utilizada para realizar el ajuste de datos, para así llegar a obtener los valores de los parámetros electroquímicos buscados. Los fenómenos a los que fueron asociados los circuitos equivalentes propuestos fueron:

- <u>Electrodo idealmente polarizable</u>. Se caracteriza por que la Resistencia de transferencia de carga presente es tan grande, R= ∞, que no hay paso de corriente faradaica. De ahí la forma del espectro. Ejemplos: Electrodo inerte en electrolito soporte a bajos sobrepotenciales.
- Interfase electroquímica con transferencia de carga y fenómeno de difusión. Existe transferencia de carga y el proceso de difusión como reflejo de la variación de la concentración de la especie electroactiva en la interfase, respecto a su valor en el seno de la disolución.
- <u>Fenómeno de pasivación</u>. Este tipo de fenómeno sucede al formarse un recubrimiento poco conductor sobre una porción del electrodo el cual impide que la corriente pase en esa región.
- <u>Fenómeno de electrodo bloqueante</u>. Este tipo de fenómeno ocurre cuando no hay transferencia de electrones a través de la interfase metal/electrolito (similar al caso 1), pero además el electrolito presenta una separación de carga significativa. Ejemplo: electrolitos poliméricos.
- 5. <u>Electrodo con capa semiconductora</u>. Como su nombre lo dice, se refiere a la formación de una capa que actúa como un semiconductor, no impidiendo así el

paso de corriente. Es un fenómeno típico de algunos materiales como los aceros inoxidables.

6. <u>Electrodos con procesos adsortivos</u>. Cuando en el electrodo sucede adsorción, se cuenta con resistencias de cada una de las etapas de la reacción electroquímica, también se encuentran capacitancias tanto de la doble capa como de una posible pseudocapacitancia de adsorción, pues la variación del recubrimiento y de la carga con el potencial da lugar a una capacitancia diferencial.

Los circuitos analizados pueden observarse de la figura 16 a la 22: del lado izquierdo se aprecia el circuito equivalente propuesto, a la derecha se ubica su espectro de impedancia.

A continuación se obtuvo la expresión matemática de impedancia para cada uno de los circuitos (la cual podemos apreciar en la parte inferior de cada figura), se propusieron valores teóricos para cada parámetro eléctrico y se generaron los datos para un intervalo de frecuencias determinadas en cada uno de los circuitos.

Tabla I – Descripción e intervalo de frecuencia utilizados para los circuitos

equivalentes teóricos analizados

Espectro simulado	pectro Descripción mulado Fenómeno electroquímico relacionado			
•		Hz		
1) Figuras 6 y 13	Circuito relacionado al electrodo idealmente polarizable: Rs representa la resistencia de la disolución y Cdl la capacitancia de la doble capa.	0.1 – 10 000		
2) Figuras 7 y 14	Se relaciona a la interfase electroquímica con transferencia de carga y fenómeno de difusión, Rs y Rt representan la resistencia de la disolución y a la transferencia de carga, respectivamente, Cdl la capacitancia de la doble capa y W representa la impedancia de Warburg.	0.01 – 10 000		
3) Figuras 8 y 15	Interpretación del fenómeno de formación parcial de una película de pasivación, donde Rs representa la resistencia de la disolución, Rt resistencia a la transferencia de carga, Cdl la capacitancia de la doble capa, Rr y Cr, resistencia y capacitancia del recubrimiento respectivamente.	0.01 – 10 000		
4) Figuras 9 y 16	Interpretación del fenómeno de electrodo bloqueante, en donde Rs representa la resistencia de la disolución, Rt la resistencia de un medio de transporte iónico, Cdl la capacitancia del medio de transporte iónico y Cr la capacitancia de la interfase bloqueante.	0.01–1000 000		
5) Figuras 10 y 17	Fenómeno de electrodo con capa semiconductora, donde Rs y Rt son la resistencia a la disolución y a la transferencia de carga respectivamente, Cdl la capacitancia de la doble capa, Cr, R1 y L1 son la capacitancia, resistencia e inductancia asociadas al fenómeno.	0.1 – 1000 000		
6) Figuras 11 y 18	Fenómeno de electrodo con procesos adsortivos, donde Rs y Rt son la resistencia a la disolución y a la transferencia de carga respectivamente, Cdl la capacitancia de la doble capa, R1, R2, L1 y L2 son parámetros asociados a dicho fenómeno.	0.001 – 10 000		
7) Figuras 12 y 19	Fenómeno de electrodo con procesos adsortivos, donde Rs y Rt son la resistencia a la disolución y a la transferencia de carga respectivamente, Cdl la capacitancia de la doble capa, Cr, Rr, R1, R2 y L2 son la capacitancia, resistencias e inductancias asociadas al fenómeno.	0.01 – 10 000		

Figura 6. Espectro simulado y circuito equivalente relacionados con el electrodo idealmente polarizable.

Figura 7. Espectro simulado y circuito equivalente de Randles, relacionados con la interfase electroquímica con transferencia de carga y fenómeno de difusión.

Figura 8. Espectro simulado y circuito equivalente relacionados con el fenómeno de pasivación.

Figura 9. Espectro simulado y circuito equivalente relacionados con el fenómeno de electrodo bloqueante.

Figura 10. Espectro simulado y circuito equivalente relacionados con el fenómeno de electrodo con capa semiconductora.

Figura 11. Espectro simulado y circuito equivalente relacionados con el fenómeno de electrodo con procesos adsortivos.

Figura 12. Espectro simulado y circuito equivalente relacionados al fenómeno de electrodo con procesos adsortivos.

3.1.2 Generación de espectros de circuitos equivalentes teóricos con error aleatorio

Para evaluar el desempeño del Algoritmo Genético en el ajuste de la función de transferencia a los espectros de impedancia, decidimos aplicarlo al ajuste de espectros que tuvieran error aleatorio, tratando de simular condiciones que podemos encontrar experimentalmente derivadas de condiciones externas al sistema.

Partiendo de la hipótesis de que al realizar un experimento bajo condiciones controladas, el error máximo que podemos tolerar comúnmente en un espectro de impedancia electroquímica es de alrededor de un 5%, es precisamente este porcentaje en el que fueron alterados nuestros espectros de circuitos equivalentes teóricos ideales, dando lugar a 7 nuevos espectros para someter a análisis. El error añadido a los 7 espectros de circuitos equivalentes teóricos propuestos fue pseudoaleatorio en el intervalo de \pm 5% del módulo a cada frecuencia, dando lugar a los siguientes espectros, diagramas de Nyquist:

Figura 13. Espectro simulado y circuito equivalente que puede ser relacionado con el electrodo idealmente polarizable con un error aleatorio del 5%.

Figura 14. Espectro simulado y circuito equivalente de Randles con error aleatorio incluido del 5%, que puede ser relacionado con la interfase electroquímica con transferencia de carga y fenómeno de difusión.

Figura 15. Espectro simulado y circuito equivalente para interpretar el fenómeno de pasivación con error aleatorio del 5%.

Figura 16. Espectro simulado y circuito equivalente para interpretar el fenómeno de electrodo bloqueante, con error aleatorio del 5%.

Figura 17. Espectro simulado y circuito equivalente para la interpretación del fenómeno de electrodo con capa semiconductora con error aleatorio del 5%.

Figura 18. Espectro simulado y circuito equivalente para la interpretación del fenómeno de electrodo con procesos adsortivos con un error del 5%.

Figura 19. Espectro simulado y circuito equivalente relacionados al fenómeno de electrodo con procesos adsortivos ahora con un error aleatorio de 5%.

3.1.3 Medición de espectros a partir de experimentos de laboratorio

Se estudiaron 2 sistemas diferentes, para los cuales se utilizó un Potenciostato/ Galvanostato EG&G Instruments Modelo 263A, así como un Analizador de impedancia Solartron Modelo SI 1260, conectados a una PC Intel Pentium IV:

- Par ferricianuro/ferrocianuro 5mM en KCI 1M
- La disolución de un electrodo de Ni en H₂SO₄ 0.5 M

3.1.3.1 Espectros del par Ferri/Ferrocianuro

En este caso el sistema consistió en un equipo de electrodo de disco rotatorio, RDE-2, con un electrodo de trabajo plano de carbón vítreo de 0.3 cm de diámetro, un electrodo auxiliar de platino y un electrodo de referencia de Ag/AgCl, inmersos en una disolución de Ferricianuro/Ferrocianuro de potasio 5 mM, en KCl 1.0 M, pH 6, como electrolito soporte. El sistema se presenta en la figura 20.

Figura 20. Equipo de disco rotatorio utilizado.

Los experimentos de impedancia fueron realizados a 200 y 400 rpm en un intervalo de frecuencia de 10 000 a 0.01 Hz en un intervalo de potencial de –80 a 80 mV DC. con respecto al potencial de equilibrio, los cambios de potencial fueron de 20 mV. La amplitud de perturbación fue de $5mV_{rms}$.

El electrodo plano de disco de carbón vítreo fue pulido previamente con alúmina.

Obtención de espectros experimentales

Los espectros fueron obtenidos a partir de las condiciones antes descritas. Sin embargo se eligieron solo 2 espectros para su ajuste, debido a que poseían la misma forma, por lo tanto, la expresión de impedancia sería la misma para todos los casos. Los resultados de los experimentos de impedancia pueden verse en la Figura 21 y en la tabla II y III. Los espectros correspondientes se presentan en la Figura 22.

No.	Potencial E,	Sobrepotencial η ,	Corriente I, A
Experimento	V _{Ag/AgCI}	mV	
*1	0.258	0	3.76E-06
2	0.278	20	2.59E-05
3	0.298	40	4.51E-05
4	0.318	60	5.70E-05
5	0.338	80	6.37E-05
6	0.238	-20	-2.17E-05
7	0.218	-40	-4.48E-05
8	0.198	-60	-6.05E-05
9	0.178	-80	-7.03E-05

Tabla II. Experimentos de impedancia a 200 rpm del sistema Ferri/Ferrocianuro

Tabla III. Experimentos de impedancia a 400 rpm del sistema Ferri/Ferrocianuro

No.	Potencial E,	Sobrepotencial η,	Corriente I, A
Experimento	V _{Ag/AgCI}	mV	
1	0.257	0	2.22E-06
2	0.277	20	3.01E-05
3	0.297	40	5.14E-05
4	0.317	60	6.51E-05
5	0.337	80	7.42E-05
6	0.237	-20	-2.03E-05
7	0.217	-40	-4.28E-05
8	0.197	-60	-5.99E-05
*9	0.177	-80	-7.27E-05

Figura 21. Diagrama i vs E (vs Ag/AgCl) para el sistema Ferri/Ferrocianuro

Figura 22. Espectros del par Ferri/Ferrocianuro obtenidos por técnica impedancia, regimen finito a 200 rpm, DC 0 V y 400 rpm, DC -80 mV.

Propuesta de circuito equivalente

Para ambos espectros, de acuerdo a la similitud presentada, fue propuesto el mismo circuito equivalente para el ajuste de datos, tal como se puede apreciar en las Figuras 23 y 24 (se muestra también su expresión de impedancia total).

Se observa que los espectros constan de 2 semicírculos, el primero de ellos, zona de altas frecuencias, corresponde a un arreglo de un Resistor y capacitor en serie, en el cual el valor de dicho resistor será determinado por el diámetro de ese semicírculo. El hecho de que el primer semicírculo no se encuentre en el origen nos habla de la existencia de una resistencia, la cual comúnmente se atribuye a la resistencia de la solución, Rs. El valor de dicho parámetro está dado por la magnitud existente entre el origen y el punto donde inicia el primer semicírculo.

Ahora bien, en la zona de bajas frecuencias (zona derecha), se aprecia la existencia de un semicírculo más grande, sin embargo, esta zona se encuentra definida por la presencia de la difusión, que en este caso corresponde al fenómeno de difusión en capa finita, el cual puede ser modelado mediante un parámetro llamado cotangente hiperbólica, O. La forma de los espectros nos habla de cómo se aprecian fenómenos de transferencia de carga (zona de altas frecuencias) y fenómenos de difusión en capa finita (zona de bajas frecuencias) en nuestro sistema, lo cual corroborando con el diagrama de Pourbaix, Figura 25, construcción de acuerdo a [15], datos de energías libres [16] y fenómenos de complejación [17], nos da información de que sólo están existiendo las reacciones de oxidación-reducción entre el Ferri y ferrocianuro.

Figura 23. Espectro de par Ferri/Ferrocianuro obtenido por técnica de disco rotatorio a 200 rpm, DC 0 V.

Figura 24. Espectro de par Ferri/Ferrocianuro obtenido por técnica de disco rotatorio a 400 rpm, DC -80

тV

Diagrama Pourbaix

Diagrama Eh - pH sistema Fe(CN)₆³⁻/Fe(CN)₆⁴⁻

Figura 25. Diagrama de Pourbaix para el sistema Ferri-Ferrocianuro

3.1.3.2 Espectros de la disolución de Ni en H₂SO₄ 0.5 M

La disolución anódica de un metal es una oxidación electroquímica en la cual el metal pasará al electrolito en forma de cationes solvatados, como iones complejos o bien pueden formar compuestos metálicos poco solubles y a potenciales suficientemente altos pueden incluso formar óxidos que recubren el metal. Así este proceso de disolución anódica de un metal consiste en transferir iones metálicos del metal a la disolución.

En la superficie metálica existen generalmente dislocaciones y defectos. De esta manera los átomos que forman parte de este plano cristalográfico abandonarán su posición al darse el proceso de disolución, el cual se producirá preferencialmente por aquellos que ocupan posiciones angulares. A medida que sucede el proceso de disolución se van creando nuevas posiciones favorables energéticamente hablando para que continúe el proceso.

La disolución anódica es muy importante en varias tecnologías: los electrodos negativos de pilas primarias y secundarias, electropulido y procesos de electrowinning. La disolución anódica de los materiales es sujeto de estudio en el campo de la corrosión, debido a que este fenómeno es el responsable del decaimiento del material.

El mecanismo de disolución activa de níquel es objeto de polémica, ya que no se ha llegado a un acuerdo sobre la forma de los perfiles corriente - potencial. Dos o un pico has sido reportados dependiendo de la velocidad de barrido, condiciones de prepolarización y propiedades estructurales del metal, entre otras cosas.

Una de las técnicas utilizadas en el estudio de la disolución anódica es precisamente la impedancia, en la cual Z_F (impedancia Faradaica) se presentará como respuesta a un fenómeno de transferencia electroquímica de cargas cruzando la interfase.

Dado que la intensidad instantánea de la corriente faradaica está dada por:

$$I / F = \Phi(E, C_j, C_{sj})$$

$$\label{eq:linear} \begin{split} & \mathsf{En} \mbox{ su forma differenciable:} \\ & \Delta \mathsf{I}_\mathsf{F}/\mathsf{F} = \delta \mathsf{F}/\delta \mathsf{E} \ \ \Delta \mathsf{E} + \ \delta \mathsf{F}/\delta \mathsf{C} \ \ \Delta \mathsf{C}_{\mathsf{sj}} + \ \delta \mathsf{F}/\delta \mathsf{C}_{\mathsf{j}} \ \ \Delta \mathsf{C}_{\mathsf{j}} \end{split}$$

Donde cada derivada parcial es una contribución a la impedancia faradaica.

Mediante este tipo de ecuaciones podemos determinar el número de entidades que participan en el mecanismo de reacción.

Condiciones Experimentales

El sistema para este experimento estuvo formado por un electrodo de trabajo de Níquel (área de trabajo aprox. 6 mm²), un electrodo de referencia de sulfatos y un electrodo auxiliar de Pt, inmersos en una disolución de H_2SO_4 0.5 M. Se realizó una voltametría cíclica, (la cual se muestra en la Figura 26), para localizar el intervalo de potencial a medir en el espectro y posteriormente se realizaron las mediciones de

impedancia en un intervalo de frecuencias de 10 000 a 0.01 Hz a los potenciales mostrados en la tabla IV. Antes de realizar la medición de la muestra se polarizó durante 10 minutos. La amplitud de perturbación utilizada fue de 10 mV.

Figura 26. Voltametría cíclica para el sistema de Ni en H_2SO_4 0.5 M

Tabla IV.	Datos de experimento	de impedancia	de disolución de Ni,
	reacción	de oxidación	

No. experimento	Potencial E, V _{ESS}	Sobrepotencial	Corriente I, A
		ղ, mV	
*1	-0.666	0	-3.00E-06
*2	-0.636	30	-2.10E-06
*3	-0.621	45	1.342E-05
4	-0.606	60	6.790E-05
*5	-0.576	90	1.102E-04
*6	-0.546	120	1.166E-04
*7	-0.516	150	1.390E-04

Tabla V. Datos de experimento de impedancia de disolución de Ni,reacción de reducción

No. experimento	Potencial E, V _{ESS}	Sobrepotencial	Corriente I, A
		η, mV	
1	-0.713	1.90E-06	0
2	-0.743	-2.32E-06	-30
3	-0.758	-2.48E-06	-45
4	-0.773	-5.65E-06	-60
5	-0.803	-4.27E-06	-90
6	-0.833	-9.63E-06	-120
7	-0.863	-9.90E-06	-150

* Espectros sometidos a ajuste de datos, mismos que se incluyen a continuación.

Espectros

Los espectros obtenidos del análisis de impedancia que se eligieron para el ajuste de datos se muestran a continuación:

Fig. 27 Catálogo de espectros obtenidos de los experimentos de impedancia para el sistema de disolución de Níquel, potenciales medidos vs ESS.

Análisis del sistema

Al tener Ni en un medio de 0.5 M H₂SO₄ se obtiene la formación de una película de sulfato de Níquel como resultado de una disolución extensiva producida al pH de esta disolución, algunas de las propiedades de la película se muestra en la siguiente referencia [18]. Enumerar estas propiedades, o al menos poner el nombre del autor

El proceso de disolución anódica tiene lugar a potenciales más positivos que el potencial de equilibrio del metal, es decir, se polariza el electrodo. Generalmente el proceso está controlado por transferencia de carga. En la medida que los iones metálicos van hacia la disolución su concentración aumenta en la zona cercana al electrodo, de esta manera se genera una diferencia de concentración de este sitio respecto al seno de la disolución, ocasionando así la difusión de los iones [19].

A medida de que el proceso de disolución se efectúa, pueden tener lugar fenómenos de pasivación. Cuando se aplican potenciales positivos a un metal que se disuelve anódicamente, al principio la intensidad de corriente va en aumento, sin embargo existe un potencial al cual cae esta corriente a valores muy bajos, lo que indica que el proceso de disolución quedó atrás y se ha generado una pasivación del metal.

Por otro lado, en términos de procesos de disolución-pasivación, respuestas capacitivas y resistencias negativas son relacionadas con inhibición o pasivación, mientras que comportamientos inductivos surgen de efectos catalíticos o activación de intermediarios (mecanismos de corrosión) [20].

Una corriente de disolución mínima es frecuentemente observada en el intervalo pasivo y la disolución creciente tiene lugar a los potenciales más altos (intervalo traspasivo). De esta manera la disolución pasiva y traspasiva se relacionan herméticamente al grado de no poder separar dichos fenómenos. De acuerdo con este comportamiento, la película formada sufrirá las modificaciones en estructura y espesor como una función del potencial y composición de la disolución. Después de la terminación de las etapas iniciales de pasivación, el comportamiento subsecuente de

38

un metal pasivado se encuentra enteramente determinado por las propiedades de la película pasiva y las reacciones como su interfase metal-electrolito.

Propuesta de circuito equivalente

<u>Ni 0 mV</u>

Para este espectro, (Figura 28), se propuso un típico circuito de Randles, dada la forma del espectro, la cual nos indica la presencia de una Resistencia, Rs debido a que el semicírculo no se encuentra partiendo del origen. El semicírculo se refiere a un arreglo Resistor-capacitor en paralelo y la impedancia de Warburg propuesta se refiere al proceso de difusión que se puede notar a bajas frecuencias. Se utilizó impedancia Warburg, ya que el tipo de difusión es de capa semi-infinita (sistema sin agitación).

Figura 28. Espectro de Nyquist de la disolución de Ni, 0 V vs ESS y circuito equivalente propuesto.

En este otro espectro, Figura 29, se puede apreciar también un semicírculo correspondiente a un arreglo Resistor-capacitor, así como una resistencia de la disolución, a altas frecuencias. Después del semicírculo se puede notar un bucle del tipo inductivo relacionado al fenómeno de pasivación. No se presenta el efecto de un proceso de difusión.

Figura 29. Diagrama de Nyquist y circuito propuesto para este sistema: disolución de Ni a 30 mV vs ESS (sentido anódico).

<u>Ni 45 mV</u>

El espectro de la Figura 30, muestra nuevamente la presencia característica de Resistencia de la disolución, y el arreglo de resistencia-capacitancia. Sin embargo después presenta 2 bucles inductivos, ligados al fenómeno de pasivación del metal. Sin presentar proceso de difusión.

Figura 30. Diagrama de Nyquist obtenido para la didisolución de Ni a 45 mV vs ESS, sentido anódico y circuito equivalente propuesto.

<u>Ni 90 mV</u>

El espectro de la Figura 31, muestra nuevamente la presencia de una Resistencia de la disolución, un efecto capacitor-resistor, así como también un bucle (semicírculo) que apenas hace presencia, el cual corresponde a otro arreglo R – Capacitor (o en este caso elemento de fase constante CPE. Después de ese efecto viene a bajas frecuencias un bucle inductivo para terminar con el efecto de un capacitor (línea vertical).

Figura 31. Diagrama de Nyquist, el cual obedece al sistema de disolución de Ni a 90 mV vs ESS, sentido anódico y circuito equivalente propuesto.

<u>Ni 120 mV</u>

Se manifiesta constante el primer arreglo, Resistencia de la disolución, Elemento de fase constante y Resistor, para el primer semicírculo. Sin embargo, ahora se presenta un nuevo semicírculo ya evidente el cual corresponde a un arreglo resistencia-capacitancia para concluir el espectro con la manifestación de un proceso difusivo, el cual propusimos como una impedancia de Warburg dado que se trata de un sistema sin agitación.

Figura 32. Diagrama de Nyquist para el sistema de Ni a 120 mV vs ESS, sentido anódico y circuito propuesto.

<u>Ni 150 mV</u>

Mantuvimos el primer arreglo constante debido a que se repite el primer semicírculo, sin embargo existe la presencia de un segundo semicírculo, que como ya dijimos se caracteriza por la presencia de un arreglo resistencia-capacitancia pero en este caso se concluye el espectro con un efecto al parecer de capacitor.

Figura 33. Diagrama de Nyquist para el sistema de Ni a 150 mV vs ESS, sentido anódico y circuito equivalente propuesto.

3.2 Algoritmo de Levenberg-Marquardt

Antes de realizar cualquier tipo de ajuste de datos debemos de tener presente que una vez generados los espectros de impedancia electroquímica debemos de proponer un modelo lo suficientemente fundamentado para explicar nuestro sistema, ya que más que tener un buen ajuste, lo que se busca es tener una respuesta a los fenómenos electroquímicos que suceden en nuestro experimento. Respecto a esto, existe un artículo interesante sobre la generación precisamente de circuitos equivalentes, en sistemas de corrosión principalmente [14].

Los espectros ya mencionados se sometieron a análisis mediante el Algoritmo no lineal de Levenberg-Marquardt. El programa utilizado para tal fin, fue el de Equivalent Circuit, Boukamp [2] el cual se basa en dicho Algoritmo de regresión no lineal para realizar el ajuste y trabaja en el ambiente MS-DOS. La introducción de datos para su lectura fue establecida en un formato bien definido como lo indica el manual del programa.

Este programa requiere, como ya se mencionó, de la entrada de datos en un formato específico, de la exacta codificación del circuito equivalente y de parámetros iniciales apropiados. El programa cuenta con una subrutina la cual se encarga de realizar una descomposición del circuito en sus elementos de tal forma que trata de proveer valores iniciales razonables para el ajuste de los parámetros del circuito; esta subrutina fue utilizada en el presente trabajo. Como alternativa, cuenta con la opción de permitir al usuario introducir por su cuenta los valores iniciales que crea convenientes.

Para efectuar los ajustes correspondientes, se introdujeron los códigos de los circuitos equivalentes ya mencionados y se utilizó la subrutina "Data cruncher" para obtener los valores iniciales que habría de darse en cada ajuste.

45

3.3 Algoritmo Genético

3.3.1 Espectros de circuitos equivalentes teóricos

Se eligió un tamaño de población inicial de 50, tasas de cruzamiento de 1, 0.9 y 0.8, y tasas de mutación de 0.1, 0.05, 0, estudiando de esta forma todas las combinaciones para cada circuito. Se realizaron 5 corridas para cada uno, con la finalidad de obtener varios resultados (dado el carácter aleatorio del programa) y poder elegir las mejores condiciones de tasa de cruzamiento y mutación, que serían consideradas en las siguientes etapas del proyecto. Además, como criterio de terminación del Algoritmo Genético, se consideraron 1000 generaciones (para los circuitos 1–4), 2000 generaciones (circuitos 5, 6 y 7) y 8000 generaciones sólo para el circuito 7, según la dificultad del circuito. Lo anterior es debido a que entre más sencillo es un circuito (pocos parámetros), el número de generaciones necesario para llegar a un ajuste aceptable es menor, mientras que, en los circuitos con mayor cantidad de parámetros por ajustar, el proceso tarda más generaciones en llegar a una semejanza con los datos experimentales (ajuste). Los intervalos se establecieron de acuerdo a cada parámetro, tratando de dar un margen de alrededor de 3 ó 4 órdenes de magnitud. Se partió de los valores que más comúnmente pueden encontrarse en la práctica para cada parámetro, tabla VI.

3.3.2 Espectros de circuitos equivalentes teóricos con error aleatorio y experimentales

Se realizó también con un tamaño de población de 50, tasa de cruzamiento de 0.9 y tasa de mutación de 0.05. Cabe aclarar que se realizó un diseño de experimentos para poder elegir las mejores condiciones de mutación y cruzamiento, sin embargo, los resultados no arrojaron cuáles serían las mejores, debido a que los resultados variaban demasiado.

La función a optimizar fue alterada por un factor de peso, tratando así de poder obtener un mejor ajuste todavía, el Algoritmo de Levenberg-Marquardt también utiliza dicho factor, pasando así de ser: $\Sigma (Z'_{mod}-Z'_{exp})^2 + \Sigma (Z''_{mod}-Z''_{exp})^2$ a convertirse en $\Sigma \omega [(Z'_{mod}-Z'_{exp})^2 + (Z''_{mod}-Z''_{exp})^2]$, donde $\omega = (Z'_{exp} + Z''_{exp})^{-1}$. El número de generaciones elegido fue de 10 000 (circuitos 1 al 5) y 5000 generaciones (circuitos 6, 46 7 y espectros experimentales) eligiéndose estos de tal manera, que la misma cantidad de tiempo fuera invertido por corrida (aproximadamente 8 horas utilizando una computadora procesador intel celeron 566 MHz). Se realizaron 5 corridas para cada circuito y la mejor solución en cada una de ellas fue comparada con el Algoritmo de Levenberg-Marquardt. Los intervalos que se establecieron para realizar el ajuste se dan a conocer el la tabla VI (hay que recordar que el Algoritmo Genético, AG, no trabaja con valores iniciales, sino por medio de intervalos que nosotros establecemos). Aquí debemos mencionar que los intervalos trataron de ser seleccionados lo más amplio posibles para los valores no discernibles gráficamente mediante los diagramas de Nyquist. Asimismo se trató de que los intervalos incluyeran los valores más comunes hablando de sistemas electroquímicos.

Para establecer estos intervalos deben ser utilizados los diagramas de Nyquist, Bode o ambos si es posible, ya que de esa manera estaremos seguros de que nuestros parámetros caerán dentro del intervalo propuesto y así se hará un ajuste mucho más preciso y rápido.

	Espectro 1			Espectro 2	
Parámetro	Min	Мах	Parámetro	Min	Max
Rs	0	1000	Rs	0	1000
Cdl	1e-06	1e-04	Rt	10	10000
			Cdl	1e-06	5e-04
			σ	10	1000
	Espectro 3			Espectro 4	
Parámetro	Min	Мах	Parámetro	Min	Max
Rs	0	1000	Rs	0	1000
Rt	1	100000	Cdl	1e-06	5e-04
Cdl	1e-06	5e-04	Rt	1000	100000
Cr	1e-11	0.1	Cr	1e-11	0.1
Rr	-100000	-100			

Tabla VI-a. Intervalos y número de generaciones establecidas para el análisis delos espectros mediante el Algoritmo Genético

	Espectro 5			Espectro 6	
Parámetro	Min	Max	Parámetro	Min	Мах
Rs	0	1000	Rs	0	1000
Cdl	1e-06	5e-04	Cdl	1e-06	1e-03
Rt	1	100000	Rt	10	10000
Cr	1e-11	1	R1	10	10000
R1	100	10000	L1	0.1	1000
L1	0.1	1000	R2	1	1000
			L2	1	10000
	Espectro 7		Generaciones		
Parámetro	Min	Max	Espectros	ideales	con error
Rs	0	1000	1	1000	10000
Cdl	1e-06	1e-03	2	1000	10000
Rt	10	10000	3	1000	10000
Cr	1e-11	1e-02	4	1000	10000
Rr	-1000	0	5	2000	10000
R1	10	10000	6	2000	5000
L1	0.1	1000	7	2000	5000
R2	1	1000	*Espectros e	experimental	les 5000 gen
[Fe(CN) ₆	³⁻]/[Fe(CN) ₆ ⁴⁻]	200 rpm	[Fe(CN)6	³⁻]/[Fe(CN) ₆ ⁴⁻]] 400 rpm
Parámetro	Min	Мах	Parámetro	Min	Мах
Rs	0	50	Rs	0	50
Rt	50	200	Rt	200	500
Yo	1.00E-07	1	Yo	1.00E-07	1
n	0	1	n	0	1
Yq	1.00E-07	1	Yq	1.00E-07	1
В	0	4	В	0.1	4

Tabla VI-b. Intervalos y número de generaciones establecidas para el análisis delos espectros mediante el Algoritmo Genético

NiO	V sentido an	ódico	Ni 30	V sentido an	ódico
Derémetre	Min	Max	Derémetre	Min	Mey
Parametro	WIN	Max	Parametro	WIIN	Iviax
Rs	0	20	Rs	0	20
Rt	10000	30000	Rt	6000	10000
Yq	1.00E-06	1.00E-02	R1	10	1.00E+05
n	0.00E+00	1.00E+00	Yq	1.00E-06	1.00E-03
Yw	1.00E-06	1.00E-02	n	0	1
			L	10000	1000000
Ni 45 ı	mV sentido a	nódico	Ni 90 n	nV sentido ai	nódico
Parámetro	Min	Max	Parámetro	Min	Мах
Rs	0	20	Rs	0	1000
Rt	1000	10000	Rt	10	10000
R1	10	1.00E+04	Rr	10	1.00E+04
R2	10	1.00E+04	С	1.00E-06	1.00E+00
Yq	1.00E-06	1.00E-03	Yo	1.00E-06	1.00E-03
n	0	1	no	0	1
L1	100	100000	L	1.00E-06	1
L2	100	10000	Yq	1.00E-06	1.00E-01
			nq	0	1
			R1	10	1.00E+04
Ni 120	mV sentido a	anódico	Ni 150 I	mV sentido a	nódico
Parámetro	Min	Max	Parámetro	Min	Мах
Rs	0	20	Rs	0	20
Rt	200	600	Rt	100	2000
Rr	200	1.00E+04	R1	10	1.00E+04
Yw	1.00E-06	1	С	1.00E-06	1.00E-02
Yo	1.00E-06	1.00E-03	Yo	1.00E-06	1.00E-02
no	0	1	no	0	1
Yq	1.00E-06	1.00E-03	Yq	1.00E-06	1.00E-02
nq	0	1	nq	0	1

Tabla VI-c. Intervalos y número de generaciones establecidas para el análisis delos espectros mediante el Algoritmo Genético

RESULTADOS

4.1 Espectros de circuitos equivalentes teóricos

Los resultados obtenidos en la primera etapa se presentan en las tablas VII, VIII y IX, en las cuales se pueden apreciar la comparación de los diversos análisis. Como se puede observar en la tabla VII, los resultados obtenidos utilizando el método no lineal de Levenberg-Marquardt, aún y cuando los valores iniciales utilizados son los que se obtienen con la subrutina destinada para ello en el programa Equivalent Circuit, son muy buenos, pero sólo para los primeros 5 circuitos; sin embargo los últimos 2 circuitos presentan grandes errores en su cálculo, siendo el caso más dramático el del circuito 7 (último circuito) en donde podemos ver que los errores en el cálculo varían desde un 0% de error hasta un 1E+18 (límite del programa). Esto demuestra la manera en que se complican las cosas a medida de que el número de parámetros va aumentando en los circuitos propuestos, aún y cuando sabemos que los datos que manejamos en esta etapa del proyecto son datos teóricos sin error alguno, y este comportamiento es fundamentalmente el problema que deseamos atacar, proponiendo una alternativa. Por otro lado, como lo podemos ver en la tabla VIII, al utilizar este método con valores iniciales muy alejados del valor real nos encontramos con la dificultad de obtener en su

mayoría grandes errores e incluso la no-convergencia del programa, afirmando nuevamente lo que se sabe a priori con este tipo de Algoritmos: los resultados dependen de los valores iniciales que se le den, pues valores iniciales alejados podrán conducirnos a un mínimo local o en el peor de los casos a la no-convergencia. Una ventaja que podemos resaltar hasta el momento con este método de ajuste es que los resultados son desplegados un tiempo máximo 10 segundos.

Ahora bien, al utilizar el Algoritmo Genético, pese a intervalos extremadamente amplios para la estimación de los parámetros, tabla VI, se obtuvo siempre respuesta por parte del programa. El hecho de realizar diversas estimaciones a distintas condiciones de mutación y cruzamiento fue para poder encontrar, si es que existía, una posible relación entre este par de condiciones y una mejor disolución, sin embargo cuando se llevó a cabo un diseño de experimentos, éste arrojó resultados en los cuales no se encontraron condiciones óptimas para los circuitos en general, pues la dispersión de datos fue considerable.

Para los primeros 4 circuitos se utilizaron 1000 generaciones, mientras que para los 3 circuitos restantes se incrementó a 2000 generaciones, llevándose tiempos, dependiendo del equipo de cómputo, de hasta 2 horas para los circuitos con mayor número de parámetros (circuitos 5 a 7) y tiempos de alrededor 2 minutos en los restantes.

Tabla VII. Resultados del ajuste de circuitos equivalentes teóricos idealesobtenidos por el Algoritmo de Levenberg-Marquardt utilizando valoresiniciales dados por subrutina de Equivalent Circuit

	_		Resultado		~·-
Espectro	Parámetros	Valor inicial	Levenb-Marq	Valor Real	%E
1	Rs	10	10	10	0
	Cdl	1.00E-05	9.99E-06	1.00E-05	0.067
	Rs	7.8	10	10	0
2	Rt	1104.8	1000	1000	0
	Cdl	2.26E-05	2.00E-05	2.00E-05	0
	Rs	9.96	10	10	0
	Rt	205.6	200	200	0
3	Cdl	1.02E-05	1.00E-05	1.00E-05	0
	Cr	9.94E-04	1.00E-03	0.001	0
	Rr	-501.2	-500	-500	0
	Rs	9.46	10	10	0
4	Rt	1612	1500	1500	0
	Cdl	9.88E-05	1.00E-04	1.00E-04	0
	Cr	3.15E-03	3.16E-03	3.16E-03	0
	Rs	0.167	0.15	0.15	0
	Cdl	4.40E-04	4.50E-04	4.50E-04	0
	Rt	68.404	69	69	0
5	Cr	0.4	0.4	0.4	0
	R1	60.53	418	418	0
	L1	0.4	328	328	0
	Rs	3.017	3.063	3	-2.1
	Cdl	3.37E-04	6.77E-04	3.40E-04	-98.9824
	Rt	34.92	34.146	35	2.44
6	R1	12.69	65.471	64	-2.29844
	L1	11.37	71.126	78	8.812821
	R2	10.711	27.638	28	1.292857
	L2	570	2844.4	2860	0.545455
	Rs	2.98	3	3	0
	Cdl	3.60E-04	3.40E-04	3.40E-04	0
	Rt	18.28	25	50	50
7	Cr	5.53E-03	4.00E-03	0.001	-300
	Rr	32.198	1.02E+18	-100	1.02E+18
	R1	34.483	6.40E+01	64	0
	L1	28.86	7.80E+01	78	0
	R2	18.6	6.36E+01	28	-127.25

Tabla VIII. Resultados del ajuste de circuitos equivalentes teóricos idealesobtenidos por el Algoritmo de Levenberg-Marquardt con los valoresiniciales utilizados como intervalo mínimo en el ajuste de AG

			Resultado		
Espectro	Parámetros	Valor inicial	Levenb-Marq	Valor Real	%E
1	Rs	0	10	10	0
	Cdl	1.00E-06	9.99E-06	1.00E-05	0.067
	Rs	0	1.61E-15	10	100
2	Rt	1.00E+01	3.78	1000	99.622
	Cdl	1.00E-06	6.20E-20	2.00E-05	100
	Rs	0	2.92E+04	10	-291900
	Rt	1	4.27E+04	200	-21250
3	Cdl	1.00E-06	3.35E-14	1.00E-05	100
	Cr	1.00E-11	1.48E-15	0.001	100
	Rr	-100000	-7.195	-500	98.561
	Rs	0	10	10	0
4	Rt	1000	1500	1500	0
	Cdl	1.00E-06	1.00E-04	1.00E-04	0
	Cr	1.00E-11	3.16E-03	3.16E-03	0
	Rs	0	0.1506	0.15	-0.4
	Cdl	1.00E-06	5.02E+10	4.50E-04	-1.1E+16
	Rt	1	3.29E-09	69	100
5	Cr	1.00E-11	0.4	0.4	0
	R1	100	216.77	418	48.14115
	L1	0.1	1.24E+05	328	-37704.9
	Rs	0		3	****
	Cdl	1.00E-06		3.40E-04	****
	Rt	0	NO	35	****
6	R1	10		64	****
	L1	0.1	Convergencia	78	****
	R2	1		28	****
	L2	1		2860	****
	Rs	0	1.2867	3	57.11
	Cdl	1.00E-06	9.06E-07	3.40E-04	99.73353
	Rt	10	1.02E-16	50	100
7	Cr	1.00E-11	2.33E+03	0.001	-2.3E+08
	Rr	-1000	-6.17E-10	-100	100
	R1	10	3.08E+16	64	-4.8E+16
	L1	0.1	1.82E+14	78	-2.3E+14
	R2	1	2.36E+00	28	91.57857

Los resultados del ajuste de datos de los circuitos equivalentes teóricos pueden ser observados en la tabla IX. Como podemos ver, primeramente, los resultados no muestran un efecto determinante en cuanto a la tasa de cruzamiento y mutación con respecto al buen ajuste de los parámetros. Ahora bien, los resultados obtenidos del ajuste muestran un muy buen ajuste en los primeros cuatro circuitos (1 a 4), un ajuste regular para el circuito 5 y un ajuste deficiente para los circuitos 6 y 7. En estos últimos circuitos notamos que mientras algunos de los parámetros llegan a aproximarse a su valor real otros parámetros se alejan, por lo que pensamos en modificar para la siguiente etapa la función a optimizar poniendo un factor de peso que trate de eliminar ese efecto.

Por otro lado sabemos que al tener un mayor número de parámetros en juego, el proceso de ajuste de datos será más complicado. A priori conocemos que al aumentar el número de generaciones encontraremos un mejor ajuste. Para comprobar esto decidimos aumentar, para el circuito ideal 7, el número de generaciones: de 2000 generaciones que se tenían inicialmente a 8000 generaciones, para conocer cuál era la reacción a esta acción tomada (con una tasa de mutación 0.1 y una tasa de cruzamiento 0.8). Lo anterior puede verse al final de la tabla IX.

Al ver los nuevos resultados nos podemos percatar de que efectivamente, al ser aumentado el número de generaciones, se obtiene un mejor ajuste, pues se disminuye notablemente el error encontrado, obteniendo de esta manera en todos los casos resultados de los parámetros del mismo orden de magnitud respecto a los valores reales.

Tabla IX. Resultados obtenidos del Algoritmo Genehunter al ajustar circuitosequivalentes teóricos ideales

Parámetros Genehun	iter		V. inicial	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F. optimiz	3.41E+12		3.87E-04		
Tasa mutación :	0.1	Rs	0	10	9.99	0.03	0.004
		Cdl	1E-06	1E-05	1E-05	0.00	0.000
Tasa cruzamiento :	1	F. optimiz	3.41E+12		2.71E-05		
Tasa mutación :	0.05	Rs	0	10	10.0	0.00	0.004
		Cdl	1E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	1	F. optimiz	3.41E+12		2.69E-05		
Tasa mutación :	0	Rs	0	10	10.0	0.00	0.005
		Cdl	1E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.9	F. optimiz	3.41E+12		2.88E-05		
Tasa mutación :	0.1	Rs	0	10	10.0003	0.00	0.008
		Cdl	1E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.9	F. optimiz	3.41E+12		4.93E-03		
Tasa mutación :	0.05	Rs	0	10	10.0	0.00	0.016
		Cdl	1E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.9	F. optimiz	3.41E+12		2.69E-05		
Tasa mutación :	0	Rs	0	10	10	0.00	0.003
		Cdl	1E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.8	F. optimiz	3.41E+12		3.14E-04		
Tasa mutación :	0.1	Rs	0	10	10.0	0.03	0.009
		Cdl	1E-06	1E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.8	F. optimiz	3.41E+12		2.84E-05		
Tasa mutación :	0.05	Rs	0	10	10.0	0.00	0.009
		Cdl	1E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.8	F. optimiz	3.41E+12		2.69E-05		
Tasa de mutación :	0	Rs	0		10.0	0.00	0.004
		Cdl	1E-06		1E-05	0.00	0.000

Espectro simulado 1. Representación de un electrodo idealmente polarizable

	E min	E max
Rs	0.00	0.03
Cdl	0.00	0.00

Parámetros Genehunter			V. inicial	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	2.90E+07		1.75E+00		
Tasa de mutación :	0.1	Rs	0	10	9.71	2.86	0.233
		Rt	10	1000	1000	0.01	0.402
		Cdl	1E-06	2.00E-05	2E-05	0.14	0.000
		σ	10	316	316	0.08	0.118
Tasa cruzamiento :	1	F.Optimizar	2.90E+07		1.89E+00		
Tasa de mutación :	0.05	Rs	0	10	9.98	0.18	0.243
		Rt	10	1000	1000	0.02	0.685
		Cdl	1E-06	2.00E-05	2E-05	0.11	0.000
		σ	10	316	316	0.08	0.140
Tasa cruzamiento :	1	F.Optimizar	2.90E+07		8.07E-04		
Tasa de mutación :	0	Rs	0	10	9.99	0.06	0.125
		Rt	10	1000	1000	0.00	0.176
		Cdl	1E-06	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	0.07	0.016
Tasa cruzamiento :	0.9	F.Optimizar	2.90E+07		2.20E-02		
Tasa de mutación :	0.1	Rs	0	10	9.98	0.21	0.075
		Rt	10	1000	1000	0.00	0.185
		Cdl	1E-06	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	0.08	0.030
Tasa cruzamiento :	0.9	F.Optimizar	2.90E+07		2.94E-01		
Tasa de mutación :	0.05	Rs	0	10	10.01	0.15	0.355
		Rt	10	1000	1000	0.01	0.526
		Cdl	1E-06	2.00E-05	2E-05	0.04	0.000
		σ	10	316	316	0.06	0.146
Tasa cruzamiento :	0.9	F.Optimizar	2.90E+07		1.21E-03		
Tasa de mutación :	0	Rs	0	10	10.01	0.10	0.017
		Rt	10	1000	1000	0.00	0.009
		Cdl	1E-06	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	0.07	0.004
Tasa cruzamiento :	0.8	F.Optimizar	2.90E+07		4.18E+00		
Tasa de mutación :	0.1	Rs	0	10	10.52	5.22	2.237
		Rt	10	1000	999	0.06	2.413
		Cdi	1E-06	2.00E-05	2E-05	0.03	0.000
	0.0	σ	10	316	316	0.09	0.108
Tasa cruzamiento :	8.0	F.Optimizar	2.90E+07		1.12E+00		
Tasa de mutación :	0.05	<u> </u>	0	10	9.87	1.25	0.235
		Rt	10	1000	1000	0.01	0.411
			1E-06	2.00E-05	2E-05	0.04	0.000
	0.0			310	316	0.10	0.055
Tasa cruzamiento :	0.8		2.90E+07	40	2.31E-05		0.051
rasa de mutación :	U	KS	0	10	10.00	0.01	0.051
		Rt	10	1000	1000	0.00	0.091

Espectro simulado 2. Representación de una interfase electroquímica: transferencia de carga y proceso de difusión

Cdl	1E-06	2.00E-05	2E-05	0.00	0.000
σ	10	316	316	0.07	0.005

	E min	E max
Rs	0.01	5.22
Rt	0.00	0.06
Cdl	0.00	0.14
σ	0.06	0.10

Espectro simulado 3. Representación del fenómeno de pasivación

Parámetros							
Genehunter			V. inicial	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F. Optimizar	2.60E+11		5.73E+02		
Tasa de mutación :	0.1	Rs	0	10	9.31	6.90	14.175
		Rt	1	200	197	1.35	13.756
		Cdl	1E-06	1.00E-05	9.9E-06	0.75	0.000
		Cr	1E-11	0.001	0.001	5.03	0.000
		Rr	-100000	-500	-491	1.72	6.142
Tasa cruzamiento :	1	F. Optimizar	2.60E+11		2.78E+02		
	0.0						
Tasa de mutación :	5	Rs	0	10	9.64	3.56	3.794
		Rt	1	200	200	0.02	3.225
		Cdl	1E-06	1.00E-05	1.1E-05	7.61	0.000
		Cr	1E-11	0.001	0.001	1.92	0.000
		Rr	-100000	-500	-500	0.02	2.808
Tasa cruzamiento :	1	F. Optimizar	2.60E+11		4.42E+01		
Tasa de mutación :	0	Rs	0	10	7.81	21.89	2.102
		Rt	1	200	202	1.21	4.868
		Cdl	1E-06	1.00E-05	9.7E-06	2.97	0.000
		Cr	1E-11	0.001	0.001	0.21	0.000
		Rr	-100000	-500	-500	0.04	4.270
Tasa cruzamiento :	0.9	F. Optimizar	2.60E+11		7.44E+02		
Tasa de mutación :	0.1	Rs	0	10	9.08	9.21	15.926
		Rt	1	200	193	3.59	14.889
		Cdl	1E-06	1.00E-05	9.4E-06	6.44	0.000
		Cr	1E-11	0.001	0.001	2.40	0.000
		Rr	-100000	-500	-490	2.03	9.392
Tasa cruzamiento :	0.9	F. Optimizar	2.60E+11		4.12E+02		
	0.0	_					
Tasa de mutación :	5	Rs	0	10	10.87	8.66	9.070
		Rt	1	200	194	3.02	10.826
			1E-06	1.00E-05	9.6E-06	4.42	0.000
			1E-11	0.001	0.001	1.15	0.000
		Rr .	-100000	-500	-493	1.46	8.277
Tasa cruzamiento :	0.9	F. Optimizar	2.60E+11		7.79E+01		
Tasa de mutación :	0	Rs	0	10	11.61	16.08	2.203

		Rt	1	200	196	1.97	1.409
		Cdl	1E-06	1.00E-05	1E-05	1.47	0.000
		Cr	1E-11	0.001	0.001	0.49	0.000
		Rr	-100000	-500	-498	0.43	3.815
Tasa cruzamiento :	0.8	F. Optimizar	2.60E+11		3.08E+03		
Tasa de mutación :	0.1	Rs	0	10	13.00	30.05	16.989
		Rt	1	200	206	2.83	27.083
		Cdl	1E-06	1.0E-05	8.7E-06	13.22	0.000
		Cr	1E-11	0.001	0.001	9.23	0.000
		Rr	-100000	-500	-516	3.27	13.813
Tasa cruzamiento :	0.8	F. Optimizar	2.60E+11		3.19E+02		
	0.0						
Tasa de mutación :	5	Rs	0	10	6.51	34.89	4.185
		Rt	1	200	208	3.83	8.911
		Cdl	1E-06	1.0E-05	9.3E-06	6.60	0.000
		Cr	1E-11	0.001	0.001	1.12	0.000
		Rr	-100000	-500	-504	0.77	7.991
Tasa cruzamiento :	0.8	F. Optimizar	2.60E+11		5.30E+00		
Tasa de mutación :	0	Rs	0	10	10.24	2.36	0.842
		Rt	1	200	199	0.44	1.382
		Cdl	1E-06	1.00E-05	1E-05	0.82	0.000
		Cr	1E-11	0.001	0.001	0.24	0.000
		Rr	-100000	-500	-499	0.11	0.731

	E min	E max
Rs	2.36	34.89
Rt	0.02	3.83
Cdl	0.75	13.22
Cr	0.21	9.23
Rr	0.02	3.27

Espectro simulado 4. Representación del fenómeno de electrodo bloqueante

Parámetros							
Genehunter			V. inicial	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	3.28E+24		8.43E+00		
Tasa de mutación :	0.1	Rs	0	10	9.70	3.02	1.855
		Rt	1E-06	1.00E-04	1E-04	0.21	0.000
		Cdl	1000	1500	1501	0.06	2.641
		σ	1E-11	0.0032	0.0032	1.19	0.000
Tasa cruzamiento :	1	F.Optimizar	3.28E+24		1.97E+01		
	0.0						
Tasa de mutación :	5	Rs	0	10	9.88	1.16	0.723
		Rt	1E-06	1.00E-04	1.00E-04	0.06	0.000
		Cdl	1000	1500	1502	0.10	3.227
		σ	1E-11	0.0032	0.0032	1.14	0.000
Tasa cruzamiento :	1	F.Optimizar	3.28E+24		1.68E-04		
Tasa de mutación :	0	Rs	0	10	10.00	0.01	0.165
		Rt	1E-06	1.00E-04	1E-04	0.00	0.000
		Cdl	1000	1500	1500	0.00	0.143

	σ	1F-11	0.0032	0.0032	1,19	0 000
Tasa cruzamiento · 0.9	F Optimizar	3 28E+24		1.36E+01		
Tasa de mutación : 0.1	Rs	0	10	9.71	2.85	1.604
	Rt	1E-06	1.00E-04	9.98E-05	0.21	0.000
	Cdl	1000	1500	1501	0.06	3.946
	σ	1E-11	3.20E-03	0.0032	1.15	0.000
Tasa cruzamiento: 0.9	F.Optimizar	3.28E+24		1.97E+01		
0.0						
Tasa de mutación : 5	Rs	0	10	10.1164	1.16	3.042
	Rt	1E-06	1.00E-04	1E-04	0.17	0.000
	Cdl	1000	1500	1501	0.05	8.254
	σ	1E-11	0.0032	0.0032	1.13	0.000
Tasa cruzamiento: 0.9	F.Optimizar	3.28E+24		4.03E-02		
Tasa de mutación : 0	Rs	0	10	9.98	0.18	0.032
	Rt	1E-06	1.00E-04	1E-04	0.02	0.000
	Cdl	1000	1500	1500	0.00	0.044
	σ	1E-11	0.0032	0.0032	1.19	0.000
Tasa cruzamiento: 0.8	F.Optimizar	3.28E+24		1.33E+02		
Tasa de mutación : 0.1	Rs	0	10	7.65	23.51	3.948
	Rt	1E-06	1.00E-04	9.9E-05	0.58	0.000
	Cdl	1000	1500	1502	0.13	8.456
	σ	1E-11	0.0032	0.0032	1.27	0.000
Tasa cruzamiento: 0.8	F.Optimizar	3.28E+24		2.12E+00		
0.0						
Tasa de mutación : 5	Rs	0	10	9.75775	2.42	1.209
	Rt	1E-06	1.00E-04	1E-04	0.06	0.000
	Cdl	1000	1500	1500.43	0.03	0.849
	σ	1E-11	3.20E-03	0.00316	1.20	0.000
Tasa cruzamiento: 0.8	F.Optimizar	3.28E+24		1.52E-04		
Tasa de mutación : 0	Rs	0	10	10.00	0.03	0.205
	Rt	1.00E-06	1.00E-04	1.00E-04	0.00	0.000
	Cdl	1000	1500	1500	0.00	0.301
	σ	1E-11	0.0032	0.0032	1.19	0.000

	E min	E max
Rs	0.01	23.51
Rt	0.00	0.58
Cdl	0.00	0.13
σ	1.13	1.27

Espectro simulado 5. Representación de un electrodo con capa semiconductora

Parámetros Genehunter		V. inicial	Valor real	Mejor sln	%Error	Desv std	
Tasa cruzamiento : 1	F.Optimizar	3.28E+24		6.73E-01			
Tasa de mutación : 0.1	Rs	0	0.15	0.21	43.25	0.177	
	Cdl	1E-06	4.50E-04	4.53E-04	0.64	0.000	
	Rt	1	69	68.62	0.56	0.279	
	Cr	1E-11	0.4	0.40	0.88	0.011	
]	R1	100	418	432	3.37	15.612	
	Γ	L1	0.1	328	347	5.88	112.793
-----------------------	-----	-------------	------------	------------	----------	--------	---------
Tasa cruzamiento :	1	F.Optimizar	3.28E+24		1.88E-01		
0.	0						
Tasa de mutación :	5	Rs	0	0.15	0.17	13.75	0.099
		Cdl	1E-06	4.50E-04	4.53E-04	0.74	0.000
		Rt	1	69	69.05	0.07	0.479
		Cr	1E-11	0.4	0.40	0.11	0.004
		R1	100	418	413	1.08	16.935
		L1	0.1	328	314	4.21	67.813
Tasa cruzamiento :	1	F.Optimizar	3.28E+24		6.18E-03		
Tasa de mutación :	0	Rs	0	0.15	0.15	1.74	0.042
		Cdl	1E-06	4.50E-04	4.50E-04	0.07	0.000
		Rt	1	69	69	0.03	0.313
		Cr	1E-11	0.4	0.40	0.02	0.001
		<u>R1</u>	100	418	418	0.02	12.146
	_	L1	0.1	328	324	1.14	41.709
Tasa cruzamiento : 0.	9	F.Optimizar	3.28E+24		7.66E+00		
Tasa de mutación : 0.	1	Rs	0	0.15	0.17181	14.54	0.089
		Cdl	1E-06	4.50E-04	0.00045	0.92	0.000
		Rt	1	69	68.067	1.35	0.321
		Cr	1E-11	0.4	0.39919	0.20	0.009
		<u>R1</u>	100	418	474.962	13.63	20.265
	_	L1	0.1	328	500.145	52.48	51.467
Tasa cruzamiento : 0.	9	F.Optimizar	3.28E+24		1.88E+00		
0.	0	_					
lasa de mutación :	5	Rs	0	0.15	0.008	94.73	0.112
	-	Cdl	1E-06	4.50E-04	4.51E-04	0.31	0.000
	-	Rt	1	69	69	0.33	0.606
	_	Cr	1E-11	0.4	0.40	0.25	0.006
	_	R1	100	418	457	9.31	31.194
	_		0.1	328	347	5.74	48.316
Tasa cruzamiento : 0.	9	F.Optimizar	3.28E+24	0.45	6.75E-06		0.004
Tasa de mutación :	╹⊢	RS Cdl		0.15	0.15	0.20	0.024
	-		1E-06	4.50E-04	4.50E-04	0.00	21.404
	-		I 1⊏ 11	0.4	0.40	0.00	0.006
	-		100	0.4 /10	0.40	0.00	122 674
	-	11	0.1	328	328	0.02	130 617
Tasa cruzamiento : 0	8	E Ontimizar	3 28E+24	020	2 71E+00	0.02	100.017
Tasa de mutación : 0	1	Rs	0.202.24	0 15	0.29	93 27	0.088
	· –	Cdl	1E-06	4 50E-04	4 53E-04	0.64	0.000
	-	Rt	1		68 1	1 35	0.000
	-	Cr	1F-11	0.4	0 40	0.25	0.039
	-	R1	100	418	434	3 87	23 514
	-	11	0.1	328	349	6.30	66 539
Tasa cruzamiento : 0	8	E Ontimizar	3 28E+24	020	8 92E-01	0.00	00.000
Λ	ŏŀ		0.202 '24		0.022-01		
Tasa de mutación :	5	Rs	0	0.15	3.73E-06	100.00	0.108
	-	Cdl	1E-06	4.50E-04	4.44E-04	1.29	0.000
		Rt	1	69	69	0.09	0.359
		Cr	1E-11	0.4	0.40	0.51	0.009
		R1	100	418	421	0.81	19.031

		L1	0.1	328	366	11.63	61.864
Tasa cruzamiento : 0	.8	F.Optimizar	3.28E+24		1.16E-04		
Tasa de mutación :	0	Rs	0	0.15	0.15	0.88	0.014
		Cdl	1E-06	4.50E-04	4.50E-04	0.02	0.000
		Rt	1	69	69	0.00	0.337
		Cr	1E-11	0.4	0.40	0.00	0.000
		R1	100	418	418	0.04	10.961
		L1	0.1	328	328	0.14	27.415

	E min	E max
Rs	0.20	100.00
Cdl	0.00	1.29
Rt	0.00	1.35
Cr	0.00	0.88
R1	0.02	13.63
L1	0.02	52.48

Espectro simulado 6. Representación de un electrodo con procesos adsortivos

Parámetros							
Genehunter			V. inicial	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	1.82E+04		4.88E+01		
Tasa de mutación :	0.1	Rs	0	3	2.4	21.18	0.326
		Cdl	1E-06	3.40E-04	3.25E-04	4.30	0.000
		Rt	10	35	35	0.08	0.558
		R1	10	64	68	5.92	144.373
		L1	0.1	78	126	61.85	344.988
		R2	1	28	23	18.84	35.202
		L2	1	2860	2252	21.26	865.384
Tasa cruzamiento :	1	F.Optimizar	1.82E+04		2.71E+00		
	0.0						
Tasa de mutación :	5	Rs	0	3	3.1	3.76	0.185
		Cdl	1E-06	3.40E-04	3.39E-04	0.43	0.000
		Rt	10	35	35	0.97	0.354
		R1	10	64	62	2.54	647.676
		L1	0.1	78	79	1.58	347.128
		R2	1	28	26	5.95	19.409
		L2	1	2860	2738	4.26	1912.454
Tasa cruzamiento :	1	F.Optimizar	1.82E+04		2.26E-05		
Tasa de mutación :	0	Rs	0	3	3.0	0.01	0.080
		Cdl	1E-06	3.40E-04	3.40E-04	0.00	0.000
		Rt	10	35	35	0.00	0.309
		R1	10	64	64.	0.00	336.795
		L1	0.1	78	78	0.00	167.264
		R2	1	28	28	0.05	7.007
		L2	1	2860	2860	0.00	1076.603
Tasa cruzamiento :	0.9	F.Optimizar	1.82E+04		9.85E+00		
Tasa de mutación :	0.1	Rs	0	3	2.7	8.99	0.220
		Cdl	1E-06	3.40E-04	3.30E-04	2.45	0.000
		Rt	10	35	35.4	1.18	0.924

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
L2 1 280 3624 26.73 125.780 Tasa cruzamiento : 0.9 F.Optimizar 1.82E+04 3.78E+00
Tasa cruzamiento :0.9 0.0F.Optimizar1.82E+043.78E+00Tasa de mutación :5Rs033.12.240.378Cdl1E-063.40E-043.32E-042.430.000Rt1035350.450.303R11064685.55218.069L10.178824.87359.218R212860241415.611493.295Tasa cruzamiento :0.9F.Optimizar1.82E+047.39E-04Tasa de mutación :0Rs033.000.22Rt1064640.0413.388L10.178780.01377.747R2128280.1820.165L21286028570.091373.518Tasa cruzamiento :0.8F.Optimizar1.82E+043.95-Tasa de mutación :0.1Rs033.040.172R11064662.80493.530-Tasa de mutación :0.1Rs033.020.92R11064662.80493.530-Tasa de mutación :0.8F.Optimizar1.82E+043.95-Tasa de mutación :5Rs032.92.480.210Cdl1E-063.40E-043.50E-041.639229.0737Tasa de mutac
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Tasa de mutación : 5 Rs 0 3 3.1 2.24 0.303 Cdl 11E-06 3.40E-04 3.32E-04 2.43 0.000 Rt 10 35 35 0.45 0.303 R1 10 64 68 5.55 218.069 L1 0.1 78 82 4.87 359.218 R2 1 2860 2414 15.61 1493.295 Tasa cruzamiento : 0.9 F.Optimizar 1.82E+04 7.39E-04 - R2 1 2860 2414 15.61 1493.295 Tasa de mutación : 0.1 Rs 0 3 3.0 0.22 0.148 Cdl 11E-06 3.40E-04 3.40E-04 10.32 1373.518 Tasa cruzamiento : 0.8 F.Optimizar 1.82E+04 3.95 - Tasa de mutación : 0.1 Rs 0 3 2.9 2.84 0.445 Cdl
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
L212860241415.611493.295Tasa cruzamiento :0.9F.Optimizar1.82E+047.39E-04 $$
Tasa cruzamiento :0.9F.Optimizar1.82E+047.39E-04Tasa de mutación :0Rs033.00.220.148Cdl1E-063.40E-043.40E-040.020.000Rt1035350.02987.492R11064640.0413.388L10.178780.01377.747R2128280.1820.165L21286028570.091373.518Tasa cruzamiento :0.8F.Optimizar1.82E+043.95-Tasa de mutación :0.1Rs032.92.84Cdl1E-063.40E-043.40E-041.210.000Rt103534.80.490.172R11064662.80493.530L10.178791.09395.606R212829.65.6123.633L212860239116.392290.737Tasa de mutación :5Rs032.92.480.0Cdl1E-063.40E-043.50E-041.61E+007asa de mutación :5Rs032.92.480.11E-063.40E-043.50E-041.860.000Rt103535.31.010.244R11064651.311121.414L10.1 </th
Tasa de mutación :0Rs033.00.220.148Cdl1E-06 $3.40E-04$ $3.40E-04$ 0.002 0.000Rt1035350.02987.492R11064640.0413.388L10.178780.01377.747R2128280.1820.165L21286028570.091373.518Tasa cruzamiento :0.8F.Optimizar1.82E+043.95-Tasa de mutación :0.1Rs032.92.840.111064662.80493.530R11064662.80493.530L10.178791.09395.606R212860239116.392290.737Tasa cruzamiento :0.8F.Optimizar1.82E+041.61E+00-0.0Rt103535.31.010.244R11064661.311121.414R11064651.311121.414R11064651.311121.414R11064651.311121.414R11064651.311121.414R11064651.311121.414R11064651.311121.414R11064651.311121.4
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Tasa de mutación :0.1Rs032.92.840.445Cdl1E-06 $3.40E-04$ $3.40E-04$ 1.21 0.000Rt1035 34.8 0.49 0.172R11064662.80493.530L10.178791.09395.606R212829.65.6123.633L212860239116.392290.737Tasa cruzamiento :0.8F.Optimizar1.82E+041.61E+00
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Tasa cruzamiento : 0.8 0.0 F.Optimizar $1.82E+04$ $1.61E+00$ Tasa de mutación :5Rs03 2.9 2.48 0.210 Cdl1E-06 $3.40E-04$ $3.50E-04$ 1.86 0.000 Rt1035 35.3 1.01 0.244 R1106465 1.31 1121.414 L10.17875 3.49 367.736 R212828 1.52 23.100 L21 2860 2697 5.69 1254.377 Tasa cruzamiento :0.8F.Optimizar $1.82E+04$ $1.42E-03$ 1.42E-03Tasa de mutación :0Rs0 3 2.99 0.31 0.117 Cdl1E-06 $3.40E-04$ $3.40E-04$ 0.06 0.000
Tasa de mutación :0.0 5Rs032.92.480.210Cdl1E-06 $3.40E-04$ $3.50E-04$ 1.86 0.000 Rt1035 35.3 1.01 0.244 R1106465 1.31 1121.414 L10.17875 3.49 367.736 R212828 1.52 23.100 L2128602697 5.69 1254.377 Tasa cruzamiento :0.8F.Optimizar $1.82E+04$ $1.42E-03$ Tasa de mutación :0Rs0 3 2.99 0.31 ORS0 $3.40E-04$ $3.40E-04$ 0.06 0.000
Tasa de mutación :5Rs032.92.480.210Cdl1E-06 $3.40E-04$ $3.50E-04$ 1.86 0.000 Rt1035 35.3 1.01 0.244 R1106465 1.31 1121.414 L10.17875 3.49 367.736 R212828 1.52 23.100 L2128602697 5.69 1254.377 Tasa cruzamiento :0.8F.Optimizar $1.82E+04$ $1.42E-03$ Tasa de mutación :0Rs0 3 2.99 0.31 0.117 Cdl1E-06 $3.40E-04$ $3.40E-04$ 0.06 0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Rt 10 35 35.3 1.01 0.244 R1 10 64 65 1.31 1121.414 L1 0.1 78 75 3.49 367.736 R2 1 28 28 1.52 23.100 L2 1 2860 2697 5.69 1254.377 Tasa cruzamiento : 0.8 F.Optimizar 1.82E+04 1.42E-03 Tasa de mutación : 0 Rs 0 3 2.99 0.31 0.117 Cdl 1E-06 3.40E-04 3.40E-04 0.06 0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
L1 0.1 78 75 3.49 367.736 R2 1 28 28 1.52 23.100 L2 1 2860 2697 5.69 1254.377 Tasa cruzamiento : 0.8 F.Optimizar 1.82E+04 1.42E-03
R2 1 28 28 1.52 23.100 L2 1 2860 2697 5.69 1254.377 Tasa cruzamiento : 0.8 F.Optimizar 1.82E+04 1.42E-03 Tasa de mutación : 0 Rs 0 3 2.99 0.31 0.117 Cdl 1E-06 3.40E-04 3.40E-04 0.06 0.000
L2 1 2860 2697 5.69 1254.377 Tasa cruzamiento : 0.8 F.Optimizar 1.82E+04 1.42E-03 Tasa de mutación : 0 Rs 0 3 2.99 0.31 0.117 Cdl 1E-06 3.40E-04 3.40E-04 0.06 0.000
Tasa cruzamiento : 0.8 F.Optimizar 1.82E+04 1.42E-03 Tasa de mutación : 0 Rs 0 3 2.99 0.31 0.117 Cdl 1E-06 3.40E-04 3.40E-04 0.06 0.000
Tasa de mutación : 0 Rs 0 3 2.99 0.31 0.117 Cdl 1E-06 3.40E-04 3.40E-04 0.06 0.000
Cdl 1E-06 3.40E-04 3.40E-04 0.06 0.000
R1 10 64 64 0.05 9.883
L1 0.1 78 78 0.06 368.778
R2 1 28 28 0.12 20.769

	E min	E max
Rs =	0.01	21.18
Cdl =	0.00	4.30
Rt =	0.00	1.18
R1 =	0.00	7.17

L1 =	0.00	61.85
R2 =	0.05	18.84
L2 =	0.00	26.73

Parámetros							
Genehunter			V. inicial	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	1.76E+04		1.72E+02		
Tasa de mutación :	0.1	Rs	0	3	2.8	7.50	1.036
		Cdl	1E-06	3.40E-04	3.0E-04	11.62	0.000
		Rt	10	50	27.6	44.88	4152.212
		Cr	1E-11	0.001	0.0027	170.10	0.003
		Rr	-1000	-100	-907	807.03	288.722
		R1	10	64	96	49.65	23.137
		L1	0.1	78	272	248.21	222.261
		R2	1	28	46	63.89	3.875
Tasa cruzamiento :	1	F.Optimizar	1.76E+04		4.82E+01		
	0.0						
Tasa de mutación :	5	Rs	0	3	2.6	12.37	0.922
		Cdl	1E-06	3.40E-04	3.67E-04	8.05	0.000
		Rt	10	50	31	38.32	3692.820
		Cr	1E-11	0.001	0.0023	133.80	0.001
		<u> </u>	-1000	-100	-313	213.38	138.918
		<u></u>	10	64	76	18.47	3715.478
		L1	0.1	78	109	40.26	168.660
-		R2	1	28	47	66.63	7.050
Tasa cruzamiento :	1	F.Optimizar	1.76E+04		1.15E+00		
Tasa de mutación :	0	Rs	0	3	3.05	1.59	1.021
		Cdl	1E-06	3.40E-04	3.44E-04	1.17	0.000
		Rt	10	50	26	47.69	3852.808
			1E-11	0.001	0.0038	2/8.56	0.003
			-1000	-100	500	399.53	354.606
			10	64	61	4.36	4667.559
			0.1	78	<u>/U</u>	9.78	51.525
	0.0	R2	1 705 - 0.1	28	58	108.41	382.408
Tasa cruzamiento :	0.9	F.Optimizar	1.76E+04		1./4E+02	00.00	4 000
Tasa de mutación .	0.1			3	2.2	20.00	1.062
			10	3.4UE-U4	2.092-04	14.94	1204 250
			1□ 10	0.001	28	44.03	4304.238
		Dr	1000	100	0.002	649.06	300 510
			1000	-100	-/ 40	52 99	1850 512
		11	0.1	04 79	30 285	265 61	250 170
		R2	0.1	70 28	205 //	60 60	209.119
Tasa cruzamiento :	00	E Ontimizar	۱ 1 76⊏⊥04	20	40	00.03	4.302
i asa uluzalilientu .	0.9		1.700+04		1./02+01		
Tasa de mutación	0.0	Re	Λ	2	27	0 70	U 283
	5	Cdl	1=_06	3 40⊑_04	3 125-04	9.19 9.26	0.703
		Rt	10	502-04	<u>3.12E-04</u> 26	0.30 <u>18</u> 28	3885 225
		Cr	15_11	0.001	0 0037	266 05	0.000.220
1		0	16-11	0.001	0.0007	200.00	0.001

Espectro simulado 7. Representación de un electrodo con capa semiconductora

		Rr	-1000	-100	-501	401.42	131.953
		R1	10	64	64	0.52	34.515
		L1	0.1	78	62	20.65	250.671
		R2	1	28	59	110.32	8.155
Tasa cruzamiento :	0.9	F.Optimizar	1.76E+04		2.35E+00		
Tasa de mutación :	0	Rs	0	3	2.9	3.78	0.900
		Cdl	1E-06	3.40E-04	3.30E-04	4.24	0.000
		Rt	10	50	26.5	46.95	4276.361
		Cr	1E-11	0.001	0.00334	233.50	0.003
		Rr	-1000	-100	-533	432.86	365.523
		R1	10	64	67	5.28	2788.367
		L1	0.1	78	90	15.33	266.589
		R2	1	28	54	93.07	6.899
Tasa cruzamiento :	0.8	F.Optimizar	1.76E+04		1.52E+02		
Tasa de mutación :	0.1	Rs	0	3	2.1	29.00	1.030
		Cdl	1E-06	3.40E-04	3.05E-04	10.26	0.000
		Rt	10	50	33	34.75	4442.205
		Cr	1E-11	0.001	0.0018	79.50	0.003
		Rr	-1000	-100	-249	149.32	113.853
		R1	10	64	97	51.88	2041.072
		L1	0.1	78	253	224.77	324.855
		R2	1	28	40	44.22	2.389
Tasa cruzamiento :	0.8	F.Optimizar	1.76E+04		4.47E+01		709.544
	0.0						
Tasa de mutación :	5	Rs	0	3	2.84	5.27	1.036
		Cdl	1E-06	3.40E-04	3.2E-04	5.00	0.000
		Rt	10	50	26	46.85	4406.082
		Cr	1E-11	0.001	0.002	155.19	0.002
		Rr	-1000	-100	-523	422.62	197.310
		R1	10	64	76	18.64	3695.835
		L1	0.1	78	128	64.30	242.470
		R2	1	28	49	75.20	5.915
Tasa cruzamiento :	0.8	F.Optimizar	1.76E+04		4.16E+00		
Tasa de mutación :	0	Rs	0	3	2.9	4.44	0.828
		Cdl	1E-06	3.40E-04	3.3E-04	3.35	0.000
		Rt	10	50	26	47.08	3786.704
		Cr	1E-11	0.001	0.00324	224.01	0.004
		<u> </u>	-1000	-100	-500	400.52	332.936
		<u></u>	10	64	69	8.04	3850.237
		L1	0.1	78	94	20.93	214.467
		R2	1	28	53	89.90	11.704

	E min	E max
Rs =	1.59	29.00
Cdl =	1.17	14.94
Rt =	34.75	48.28
Cr =	79.50	278.56
Rr =	149.32	807.03
R1 =	0.52	52.88
L1 =	9.78	265.61

4.2 Espectros de circuitos equivalentes teóricos con error aleatorio

Los resultados para esta segunda parte del proyecto, se muestran en las tablas X y XI. Se encontró un buen ajuste tanto por Algoritmo Genético, como para el ajuste con el método de Levenberg-Marquardt ya que con ambos se obtienen valores muy cercanos a los teóricos o reales para los primeros 5 circuitos; sin embargo en el último de los circuitos, el ajuste no fue tan bueno, esto se debe a la mayor cantidad de parámetros a ajustar. Realizando una breve comparación entre ambos métodos, se aprecia un comportamiento muy similar, sin embargo, al ver parámetro por parámetro ajustado, podemos observar un ajuste levemente mejor para el circuito 7, pues aunque los dos métodos reportan valores del orden de magnitud, en el caso del AG se tienen valores más cercanos a los reales. Sin embargo ya es muy alentador el hecho de que con el Algoritmo Genético se obtengan valores similares a los del método más extensamente utilizado para EIS.

Debemos resaltar la ventaja de que el Algoritmo Genético no requirió de tener un valor o intervalo muy cercano al real para llegar a dar resultados tan competentes.

Por otro lado, también son anexados los gráficos de errores residuales (Figuras 24 a 30), los cuales como podemos observar nos dan un panorama del ajuste realizado tanto por el método de Levenberg-Marquardt, LM, como por el de Algoritmo genético, AG, respecto del error real alimentado por nosotros %E real. Si observamos detenidamente podremos darnos cuenta de que el error que presentan ambos ajustes no van más allá que el que fue alimentado de manera aleatoria (5%), a excepción de un gráfico, lo cual nos habla del buen desempeño de ambos métodos como ajuste. Sin embargo a medida que el circuito se complica el error tiende a aumentar un poco, algo que podemos ver para los 2 últimos circuitos.

Para los primeros 5 circuitos el comportamiento del Algoritmo de Levenberg-Marquardt, como el de Algoritmo Genético es simplemente el mismo; sin embargo en los 2 últimos circuitos el curso del ajuste es distinto entre ambos métodos, esto puede deberse al distinto principio de ajuste de los métodos. De hecho se ve como en el circuito 6 el ajuste mediante el Algoritmo de Levenberg-Marquardt se separa de la tendencia de las otras dos líneas (error real y ajuste AG), esto se debe a que tiene menor grado de ajuste. Y en cuanto al último circuito el AG tiene un solo punto que llega a un error de hasta el 10%.

65

Espectro	Parámetro	Valor inicial	Resultado Levenberg-Marquar	Valor Real	%Е
1	Rs	9.86	9.88	10	1.23
	Cdl	9.72E-06	1.01E+00	1.00E-05	-1E+07
	Rs	10.094	9.94	10	0.58
2	Rt	1033.9	985.75	1000	1.42
	Cdl	1.94E-05	2.00E-05	2.00E-05	0
	Rs	10.704	10.07	10	-0.73
	Rt	196.28	197.36	200	1.32
3	Cdl	8.11E-06	9.84E-06	1.00E-05	1.63
	Cr	9.74E-04	1.01E-03	0.001	-0.82
	Rr	-534.6	-498.5	-500	0.3
	Rs	1.026	9.85	10	1.53
4	Rt	174	1502.1	1500	-0.14
	Cdl	1.11E-04	9.88E-05	1.00E-04	1.2
	Cr	3.09E-03	3.21E-03	3.16E-03	-1.64
	Rs	3.75E-02	1.51E-01	0.15	-0.45
	Cdl	4.66E-04	4.49E-04	4.50E-04	0.24
	Rt	68.985	69.422	69	-0.61
5	Cr	0.296	0.39485	0.4	1.29
	R1	55.91	407.44	418	2.53
	L1	16.28	397.4	328	-21.2
	Rs	3.0617	2.9836	3	0.55
	Cdl	2.94E-04	3.37E-04	3.40E-04	1.02
	Rt	34.896	34.841	35	0.45
6	R1	25.045	81.059	64	-26.6
	L1	12.717	81.059	78	-3.92
	R2	16.363	29.247	28	-4.45
	L2	531.23	2895.4	2860	-1.24
	Rs	3.1558	2.97	3	0.88
	Cdl	3.50E-04	3.37E-04	3.40E-04	0.75
	Rt	17.72	22.954	50	54.1
7	Cr	6.50E-03	4.92E-03	0.001	-392
	Rr	35.299	1.92E+02	-100	292
	R1	18.132	6.52E+01	64	-1.8
	L1	33.641	8.65E+01	78	-10.9
	R2	34.91	8.62E+01	28	-208

Tabla X. Resultados del ajuste para los circuitos equivalentes teóricoscon error aleatorio mediante el Algoritmo de Levenberg-Marquardt

Tabla XI. Resultados del ajuste de circuitos equivalentes teóricos ideales con 5%
de error aleatorio mediante el Algoritmo Genético Genehunter

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			0.018	
Rs	10	Ω	9.9	1.22
Cdl	1.00E-05	F	1.00E-05	0.53
			Emax	1.22
			Emin	0.53

Espectro simulado 1. Representación de un electrodo idealmente polarizable

Espectro simulado 2. Representación de una interfase electroquímica: transferencia de carga y proceso de difusión

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			1.89E-02	
Rs	10	Ω	9.9	0.51
Rt	1000	Ω	986	1.37
Cdl	2.00E-05	F	2.00 E-05	0.14
σ	316		319	1.10
			Emax	1.37
			Emin	0.14

Espectro simulado 3. Representación del fenómeno de pasivación

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			1.64E-02	
Rs	10	Ω	10	0.82
Rt	200	Ω	198	1.20
Cdl	1.00E-05	F	9.84E-06	1.55
Cr	0.001	F	0.001	0.76
Rr	-500	Ω	-499	0.20
			Emax	1.55
			Emin	0.20

Espectro simulado 4. Representación del fenómeno de electrodo bloqueante

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			1.87E-02	
Rs	10	Ω	9.84	1.63
Cdl	1.00E-04	F	9.89E-05	1.05
Rt	1500	Ω	1500	0.00
Cr	3.20E-03	F	3.21E-04	0.43
			Emax Emin	1.63 0.0016

Espectro simulado 5. Representación de un electrodo con capa semiconductora

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			1.91E-02	
Rs	0.15	Ω	0.15	0.47
Cdl	4.50E-04	F	4.48E-04	0.38
Rt	69	Ω	69	0.55
Cr	0.4	F	0.39	1.42
R1	418	Ω	409	2.05
L1	328	Н	408	24.4
			Emax	24.4
			Emin	0.38

Espectro simulado 6. Representación de un electrodo con procesos adsortivos

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			3.31E-02	
Rs	3	Ω	2.99	0.32
Cdl	3.40E-04	F	3.35E-04	1.29
Rt	35	Ω	34.8	0.58
R1	64	Ω	65.6	2.46
L1	78	Н	78.4	0.50
R2	28	Ω	30.5	8.9
L2	2860	Н	2767	3.2
			Emax	8.9
			Emin	0.32

Espectro simulado 7. Representación de un electrodo con capa semiconductora

Parámetros	Valor	Unidades	Mejor solución	%Error
a evaluar	real			Absoluto
F. optimizar			6.32E-02	
Rs	3	Ω	2.96	1.19
Cdl	3.40E-04	F	3.30E-04	1.38
Rt	50	Ω	30	39
Cr	0.001	F	0.00245	145
Rr	-100	Ω	-508	408
R1	64	Ω	85	33
L1	78	Н	174	123
R2	28	Ω	45.5	62
			Emax	408

Emin 1.19

Figura 34. Circuito equivalente 1 con <u>+</u> 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta el gráfico de errores residuales imaginarios

Figura 35. Circuito equivalente 2 con <u>+</u> 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta gráfico de errores residuales imaginarios

Figura 36. Circuito equivalente 3 con <u>+</u> 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta el gráfico de errores residuales imaginarios

Figura 37. Circuito equivalente 4 con <u>+</u> 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta el gráfico de errores residuales imaginarios

Figura 38. Circuito equivalente 5 con \pm 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta el gráfico de errores residuales imaginarios

Figura 39. Circuito equivalente 6 con \pm 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta el gráfico de errores residuales imaginarios

Figura 40. Circuito equivalente 7 con \pm 5 % Error aleatorio. A la izquierda el gráfico de Errores residuales reales, a la derecha se presenta el gráfico de errores residuales imaginarios

4.3 Espectros experimentales

Respecto al ajuste de los espectros obtenidos en laboratorio para el sistema Ferri/Ferrocianuro y la disolución de Níquel en ácido sulfúrico 0.5 M, los resultados de la tabla XII y XIII, muestran cómo ambos métodos llegan a valores muy semejantes, excepto para el espectro de Ni 90 mV en el cual el método de Levenberg-Marquardt muestra una no convergencia del programa, pues arroja errores que van al límite del programa mismo.

El hecho de esta similitud de resultados nos da la pauta a obtener una mayor confianza en el Algoritmo Genético (AG) pues los valores obtenidos por el Algoritmo de Levenberg-Marquardt (LM) son reproducibles mediante este otro método. Sin embargo debemos ahora evaluar y analizar detenidamente los gráficos de errores residuales, los cuales nos darán mayor información acerca de que tan ciertos o qué tanta confianza debemos de tener con los resultados obtenidos por ambos métodos.

Los resultados de errores residuales se reportan en las figuras 31 a 38.

Tabla XII. Resultados del ajuste de espectros experimentales del sistema Ferri/Ferrocianuro mediante el Algoritmo de Levenberg-Marquardt y el Algoritmo Genético Genehunter

Sistema [Fe(CN) ₆ ³⁻]/[Fe(CN) ₆ ⁴⁻] 400 rpm				
Parámetros	Resultado	Resultado		
a evaluar	Levenberg-Marquardt	Algoritmo Genético		
F. optimizar	1.07E-02	6.38E-02		
Rs, Ω	14.60	11.65		
Rt, Ω	382	422		
Yo	6.55E-04	7.01E-04		
n	0.92	0.86		
Yq	1.75E-06	3.14E-06		
В	0.92	0.97		
Sistema [Fe(CN) ₆ ³⁻]/[Fe(CN) ₆ ⁴⁻] 400 rpm				
Sister	ma [Fe(CN) ₆ ³⁻]/[Fe(CN) ₆ ⁴⁻]	400 rpm		
Sister Parámetros	ma [Fe(CN) ₆ ³⁻]/[Fe(CN) ₆ ⁴⁻] Resultado	400 rpm Resultado		
Sister Parámetros a evaluar	ma [Fe(CN) ₆ ³]/[Fe(CN) ₆ ⁴] Resultado Levenberg-Marquardt	400 rpm Resultado Algoritmo Genético		
Sister Parámetros a evaluar F. optimizar	ma [Fe(CN) ₆ ³]/[Fe(CN) ₆ ⁴] Resultado Levenberg-Marquardt 1.07E-02	400 rpm Resultado Algoritmo Genético 6.38E-02		
Sister Parámetros a evaluar F. optimizar Rs, Ω	ma [Fe(CN) ₆ ³]/[Fe(CN) ₆ ⁴] Resultado Levenberg-Marquardt 1.07E-02 14.60	400 rpm Resultado Algoritmo Genético 6.38E-02 11.65		
Sister Parámetros a evaluar F. optimizar Rs, Ω Rt, Ω	ma [Fe(CN) ₆ ³]/[Fe(CN) ₆ ⁴] Resultado Levenberg-Marquardt 1.07E-02 14.60 382	400 rpm Resultado Algoritmo Genético 6.38E-02 11.65 422		
Sister Parámetros a evaluar F. optimizar Rs, Ω Rt, Ω Yo	ma [Fe(CN) ₆ ³]/[Fe(CN) ₆ ⁴] Resultado Levenberg-Marquardt 1.07E-02 14.60 382 6.55E-04	400 rpm Resultado Algoritmo Genético 6.38E-02 11.65 422 7.01E-04		
Sister Parámetros a evaluar F. optimizar Rs, Ω Rt, Ω Yo n	ma [Fe(CN) ₆ ³]/[Fe(CN) ₆ ⁴] Resultado Levenberg-Marquardt 1.07E-02 14.60 382 6.55E-04 0.92	400 rpm Resultado Algoritmo Genético 6.38E-02 11.65 422 7.01E-04 0.86		
Sister Parámetros a evaluar F. optimizar Rs, Ω Rt, Ω Yo n Yo Yq	ma [Fe(CN)6 ³]/[Fe(CN)6 ⁴] Resultado Levenberg-Marquardt 1.07E-02 14.60 382 6.55E-04 0.92 1.75E-06	400 rpm Resultado Algoritmo Genético 6.38E-02 11.65 422 7.01E-04 0.86 3.14E-06		

Tabla XIII. Resultados del ajuste de espectros experimentales del sistema Níquel
mediante el Algoritmo de Levenberg-Marquardt y el Algoritmo Genético
Genehunter

Espectro obtenido a 0 mV				
Parámetros	Resultado	Resultado		
a evaluar	Levenberg-Marquardt	Algoritmo Genético		
F. optimizar	6.65E-02	6.65E-02		
Rs , Ω	5.77	5.76		
Rt, Ω	26298	26308		
Yq	5.02E-06	5.03E-06		
n	0.925	0.92		
Yw	1.75E-03	1.79E-03		

Espectro obtenido a 30 mV

Parámetros	Resultado	Resultado
a evalual	Levenberg-Marquarut	Algoritmo Genetico
F. optimizar	4.04E-02	4.02E-02
Rs , Ω	5.85	5.85
Rt, Ω	8946.7	8964
R1 , Ω	2.80E+04	29200
Yq	5.64E-06	5.66E-06
n	9.24E-01	0.92
L, H	380360	360927

Espectro obtenido a 45 mV

Parámetros	Resultado	Resultado
a evaluar	Levenberg-Marquardt	Algoritmo Genético
F. optimizar	4.98E-02	4.99E-02
Rs, Ω	5.8	5.78
Rt, Ω	1768	1766
R 1, Ω	7.17E+03	2315
R2 Ω,	2.34E+03	7181
Yq	7.44E-06	7.47E-06
n	9.16E-01	0.92
L1, H	2004.8	26454
L2 , H	26507	2019

Espectro obtenido a 90 mV

Parámetros a evaluar	Resultado Levenberg-Marquardt	Resultado Algoritmo Genético
F. optimizar	2.08E+06	3.56E-02
Rs , Ω	5.76	5.47
Rt, Ω	1.15E+06	6023
Rr, Ω	466	568
C, F	0.12	0.124
Yo	2.00E-05	2.32E-05
no	0.84	0.86
L,H	5.86E+16	0.19
Yq	3.50E-16	0.066
nq	-1	0.32
R1 , Ω	4.96E+14	4896

Espectro obtenido a 120 mV

Parámetros	Resultado	Resultado
a evaluar	Levenberg-Marquardt	Algoritmo Genético
F. optimizar	3.35E-03	4.26E-03
Rs, Ω	5.6	5.51
Rt, Ω	458	456
R r, Ω	2140	2369
Yw	0.032	0.031
Yo	2.22E-05	2.3E-05
no	0.87	0.86
Yq	5.77E-05	5.07E-05
nq	0.93035	0.98

Espectro obtenido a 150 mV

Parámetros	Resultado	Resultado
a evaluar	Levenberg-Marquardt	Algoritmo Genético
F. optimizar	5.22E-01	1.150E-01
Rs, Ω	5.8496	4.991
Rt , Ω	1098	1005.540
R 1, Ω	451	611.000
C, F	0.00631	6.070E-03
Yo	2.10E-05	3.910E-05
no	0.86	0.807
Yq	5.38E-04	3.960E-04
nq	0.7	0.89

En cuanto a los resultados observados en los gráficos de errores residuales de los algoritmos genético y de Levenberg-Marquardt, que mostraremos a continuación en las Figuras 41 a 48 (donde se muestran del lado izquierdo los errores reales y a la derecha los errores imaginarios de ambos métodos), tenemos que, por ejemplo, para el sistema de Fe se obtiene como máximo un error de un 15%, lo cual es muy buen indicio de que el ajuste es bueno por ambos algoritmos. Sin embargo, en el ejemplo de Ni 0 V, mientras que el ajuste por medio de Algoritmo genético es bueno, el método de L-M resulta con error de hasta un 100% lo cual es indicio de ruido en los resultados. Respecto al Algoritmo Genético se puede decir, basándonos en los gráficos de errores residuales, que tiende a un buen ajuste en todos los espectros, tanto del sistema Fe, como del sistema Ni. En cambio el método de Levenberg-Marquardt tiende a no converger en el caso del espectro Ni 90 mV, y tener errores altos en el espectro Ni 0 V y Ni 150 mV, lo cual al momento de revisar los resultados pueden ser una advertencia de no tener demasiada confianza en el ajuste.

Errores residuales

Figura 41. Sistema [Fe(CN)₆³⁻]/[Fe(CN)₆⁴⁻] 200 rpm

Figura 42. Sistema [Fe(CN)₆³⁻]/[Fe(CN)₆⁴⁻] 400 rpm

Figura 43. Sistema Ni 0 V

Figura 44. Sistema Ni 30 mV.

Figura 45. Sistema Ni 45 mV.

Figura 46. Sistema Ni 90 mV.

Figura 47. Sistema Ni 120 mV.

Figura 48. Sistema Ni 150 mV

Interpretación electroquímica

Sistema Fe(CN)6³⁻]/[Fe(CN)6⁴⁻

De acuerdo al tipo de espectro la propuesta del circuito equivalente puede relacionarse a varios procesos físicos que ocurren en el sistema.

CONDUCTIVIDAD DE LA DISOLUCIÓN

Podemos obtener en primera instancia, la conductividad de la disolución pues ésta es obtenida a partir del dato de Resistencia de la disolución, Rs.

Donde k es la conductividad de la disolución, r1 es el radio del electrodo y Rs es el valor de resistencia de la disolución.

Por lo tanto aplicando esta fórmula con los datos de que se disponen, como lo son r1= 0.15 cm, y Rs, Ω según lo encontrado con el ajuste del Algoritmo Genético y Levenberg-Marquardt, tenemos los resultados de la conductividad de la disolución. Reportados en la tabla.

CAPACITANCIA DE LA DOBLE CAPA

Otro parámetro de interés es la obtención de la capacitancia de la doble capa, Cdl, la cual puede obtenerse a partir del valor de la frecuencia máxima o característica, ω_o : $\omega_o = 1/(Rt Cdl)$

En la tabla XIV se muestra el valor de la frecuencia característica para cada espectro. La frecuencia característica es la que corresponde al punto máximo alcanzado del semicírculo en el espectro.

CORRIENTE DE INTERCAMBIO

La obtención de corriente de intercambio puede calcularse gracias a la relación:

Rt= RT/(n F
$$i_o$$
)

Donde Rt, corresponde al valor de resistencia de transferencia de carga, R es la constante de los gases con valor de 8.314 J/mol K, T es la temperatura a la cual se realizaron los experimentos, en nuestro caso temperatura 298 K, n son los electrones intercambiados en la reacción, para este sistema n= 1e⁻, F es la constante de Faraday 96487 C/mol e i_o es la corriente de intercambio, A/cm².

	Fe(CN) ₆ ³⁻]/[Fe(C	N)6 ⁴⁻ 200 rpm	Fe(CN) ₆ ³⁻]/[Fe(CN) ₆ ⁴⁻ 400 rpm		
Parámetros	Levenberg-	Algoritmo	Levenberg-	Algoritmo	
	Marquardt Genético		Marquardt	Genético	
Rs, Ω	14.94	.94 6.33		11.65	
Rt, Ω	132	161	382	422	
ω _o , s ⁻¹	6283.2	6283.2	2342	2342	
k, S/cm	0.112	0.262	0.114	0.143	
Cdl, F	Cdl, F 1.21e-06 9.89e-07		1.12e-06	1.01e-06	
i₀ A/cm².	1.94E-04	1.59E-04	6.70E-05	6.08E-05	

Tabla XIV. Resultados de parámetros electroquímicos para el sistemaFerri/Ferrocianuro.

Sistema de la disolución de Ni

El modo de obtención de los parámetros es el mismo que en el caso anterior, únicamente hay que tomar en cuenta los datos distintos, como lo son: el radio del electrodo que en este caso es de 0.138 cm, y el número de electrones intercambiados son 2: Ni = $Ni^{2+} + 2e^{-}$

Tabla XIV. Resultados de parámetros electroquímicos para el sistema de disolución de Ni

Espectro	Método	Parámetros del espectro			Parámetros electroquímicos			
	Ajuste	Rs, Ω	Rt, Ω	ω _ο , s ⁻¹	K, S/cm	Cdl, F	i _o A/cm ²	
Ni 0 mV	Levenberg-	5.77	26298	8.73	0.314	4.35e-06	4.88e-07	
	Marquardt							
	Algoritmo	5.76	26308		0.314	4.35e-06	4.88e-07	
	Genético							
Ni 30 mV	Levenberg-	5.85	8947	23.42	0.310	4.77e-06	1.44e-06	
	Marquardt							
	Algoritmo	5.85	8964		0.310	4.76e-06	1.43e-06	
	Genético							
Ni 45 mV	Levenberg-	5.80	1768	121.31	0.312	4.66e-06	7.26e-06	
	Marquardt							
	Algoritmo	5.78	1766		0.313	4.67e-06	7.27e-06	
	Genético							
Ni 90 mv	Levenberg-	5.76	1.15e06	234.2	0.315	3.71e-09	1.12e-08	
	Marquardt							
	Algoritmo	5.79	521		0.313	8.19e-06	2.46e-05	
	Genético							
Ni 120 mV	Levenberg-	5.6	458	234.2	0.323	9.32e-06	2.80e-05	
	Marquardt							
	Algoritmo	5.5	456		0.329	9.35e-06	2.81e-05	
	Genético							
Ni 150 mV	Levenberg-	5.85	1098	325.4	0.310	2.78e-06	1.17e-05	
	Marquardt							
	Algoritmo	4.99	1005		0.363	3.06e-06	1.28e-05	
	Genético							

CONCLUSIONES

En el presente trabajo se propuso un método alternativo para el ajuste de espectros de impedancia electroquímica basado en la aplicación de un Algoritmo Genético comercial: Genehunter. Se comparó el ajuste mediante este método propuesto contra el método tradicional: Levenberg-Marquardt, aplicados para:

- Espectros de circuitos equivalentes teóricos ideales
- Espectros de circuitos equivalentes teóricos con error aleatorio
- Espectros de sistemas electroquímicos experimentales conocidos

El ajuste mediante el Algoritmo Genético fue bueno, aprobando también el ajuste de espectros experimentales, en relación con los resultados obtenidos mediante el método de Levenberg-Marquardt y basándonos también en el análisis de los gráficos de errores residuales, los cuales nos presentan errores por parte del Algoritmo Genético no muy altos (10-15%). Esto podría mejorarse aumentando el número de generaciones. Al realizar el ajuste en espectros experimentales, podemos apreciar en los gráficos de errores residuales que, mientras el método de Levenberg-Marquardt tiende en algunas ocasiones a no converger (dada su naturaleza de depender de los valores iniciales alimentados o la posibilidad de caer en un mínimo local), el Algoritmo

Genético se mantiene de un margen de error similar en la mayoría de los ajustes, dándonos así siempre una solución aunque tenga un error implícito. Sin embargo, notamos cómo el error en la mayoría de los casos es similar al que podemos encontrar con el método convencional de LM, con la ventaja de no depender de los valores iniciales, sino solo de definir un intervalo adecuado (algo que podemos obtener con ayuda del espectro). Por tanto podemos afirmar que la aplicación del Algoritmo Genético utilizado realiza un buen ajuste a los parámetros de los circuitos, el cual puede ser mejorado en la medida en la que se aumente el número de generaciones: además se puede trabajar con un intervalo muy amplio para la búsqueda de las soluciones y los operadores genéticos (mutación y cruza) ayudan a evitar la caída en un mínimo local (específicamente, la mutación disminuye esta posibilidad). Las desventaias que se pueden presentar por utilizar el entorno Excel es que al trabajar con números complejos el tiempo de ejecución del algoritmo es muy alto, el cual se va incrementando conforme más parámetros tenga la función a evaluar. Sin embargo dado que nuestro objetivo es encontrar valores lo más cercano a la realidad de cada uno de los parámetros en cuestión, este método es una buena opción para realizar los aiustes de espectros de impedancia.

El método de Levenberg-Marguardt sigue siendo muy conveniente, para circuitos sencillos (y en general para funciones de transferencia sencillas, con pocos parámetros), ya que se obtiene una buena exactitud y el tiempo de respuesta es muy rápido, sin embargo cuando se trata de funciones de transferencia complicadas, en las cuales intervienen muchos parámetros o los valores iniciales de estos parámetros son muy difíciles de apreciar por la forma de su espectro (por ejemplo resistencias traslapadas e inductancias) es necesario tener una alternativa. En este caso el Algoritmo Genético, que como hemos comprobado en el presente trabajo, puede ser utilizado confiablemente, pues de otra manera corremos el riesgo de que al no dar unos buenos valores iniciales nuestro programa no converja o nos dé valores erróneos, cosa que con el Algoritmo Genético es superada ya que no depende de los valores iniciales, y puesto que tiende a explorar en un campo extenso de posibilidades para encontrar los mejores resultados, estaremos seguros de no caer en un mínimo local. Éste es el principal motivo por el cual se buscó una vía alterna al método que hasta nuestros días se ha venido utilizando tan frecuentemente, pero que en casos especiales o más específicos puede no servir.

Como podemos darnos cuenta, la utilización de los Algoritmos Genéticos en el ajuste de espectros de impedancia electroquímica mediante circuitos equivalentes es una buena alternativa, siendo aún el método de Levenberg-Marquardt la mejor opción tratándose de circuitos de pocos parámetros (por la exactitud y rapidez del método).

Algunas de las perspectivas con que se cuentan es la de realizar un programa completo basado en los algoritmos genéticos, directamente aplicado para este tipo de ajuste de datos. De esa manera podremos obtener los resultados con una mayor rapidez al no tener que trabajar en el entorno Excel.

Aquí hemos visto que los Algoritmos genéticos, que ya han sido utilizados en otros campos de estudio, también pueden ser aplicados al análisis de espectros de impedancia electroquímica teniendo la confianza de tener un buen comportamiento, tan similar en circuitos sencillos como el método tradicional, LM, y en circuitos complicados llegando a subsanar lo que éste no puede trabajar.

REFERENCIAS

- [1] Cottis R., Turgoose S., (1999) *Electrochemical impedance and noise*, NACE publications, 1999, USA, 149 pp.
- [2] Boukamp Bernard A. (1988) *Eqivalent circuit, users manual.* University of twente, Netherlands, p. 52.
- [3] Yang Minli, Zhang Xuhong, Li Xiaohong, Wu Xizun, (2002) A hybrid genetic algorithm for the fitting of models to electrochemical impedance data. *J. Electroanal. Chem.*, **519.**
- [4] VanderNoot T.J., Abrahams I. (1998) The use of genetic algorithms in the non-linear regression of immitance data. *J. Electroanal. Chem.*, **448**, 17-23.
- [5] Bard, Allen J. (2001) *Electrochemical methods: fundamentals and applications. 2nd. Ed. Pp. 368-388.*
- [6] Macdonald, J. Ross, (1987) Impedance Spectroscopy. Emphasizing solid materials and systems. John Wiley, 1st Ed. P 340.

- [7] Mansfeld F. Tsai, C. H., and Shih, H., Greene, H., (1993) Analysis of EIS data for common corrosion processes. Electrochemical impedance: Analysis and interpretation, ASTM STP 1188, J. R. Scully, D. C. Silverman and M. W Kending, Eds. American Society for Testing and Materials, Philadelphia, pp. 37-53.
- [8] Mansfeld, F., Tsai, C.H., and Shih, H. (1992) Software for simulation and analysis of electrochemical impedance spectroscopy (EIS) Data. Computer modeling in corrosion, ASTM STP 1154, R. S. Munn Ed., American Society for Testing and Materials. Philadelphia, pp. 186-196.
- [9] Roberge, P. R., (1992) Analyzing electrochemical impedance corrosion measurements by the systematic permutation of data points. Computer modeling in corrosion, ASTM STP 1154. R. S. Munn Ed. American Society for testing and materials, Philadelphia, pp. 197-211.
- Burden, R. L., Faires, J. D., (2002) *Análisis numérico*, Thomson Learning, 7^a ed. Pp 628-644.
- [11] <u>http://en.wikipedia.org/wiki/category:optimization_algoritms</u>
- [12] <u>http://mathworld.wolfram.com/Levenberg-MarguardtMethod.html</u>
- [13] Goldberg David E. (1989) *Genetic algorithms in search, optimization and machine learning*. Addison-Wesley, New York, p. 412.
- [14] Pye, E. L. And Golestaneh, K., (1992) Equivalent electronic circuits computer generated from alternating-current impedance data. Computer modeling in corrosion, ASTM STP 1154, R. S. Munn Ed., American Society for Testing and Materials, Philadelphia, pp. 5-16.
- [15] Pourbaix, M., (1974) Atlas of electrochemical equilibria in aqueous solutions, Nace International Cebelcov, Houston Texas.

- [16] Bard, A. J., Parsons, R, Jordan J, (1979) Standard potentials in aqueous solution, Marcel Dekker, New York, pp. 333.
- [17] Bard, A. J. (1982) *Encyclopedia of electrochemistry of the elements*, Vol.IX, part A, Marcel Dekker, New York, pp. 229-323
- [18] Wieckowski, A, (1999) *Interfacial Electrochemistry. Theory, experiment and applications*, Marcel Dekker, New York, pp. 545-548
- [19] Bockis, J. O'M, Reddy, A. K.N., (1979) *Electroquímica Moderna*, Vol. I, Reverté, New York, pp. 299-351.
- [20] Marcus, P., Oudar, J., (1995) Corrosion mechanisms in theory and practice, Marcel Dekker, New York, pp. 55-90

ANEXOS

ANEXO I. Utilización del Algoritmo Genético

El Algoritmo Genético utilizado para el análisis de los circuitos fue el algoritmo comercial Genehunter 2.3, este programa se utilizó en su forma ejecutable a través del ambiente Excel:

- Una vez teniendo el programa Genehunter deberá ser dado de alta como un complemento en Excel. Ya habilitado el programa está listo para ser utilizado (ver figura 10).
- 2. Debemos tener una hoja de Excel con los datos experimentales de impedancia, -Z'' vs Z', frecuencia, los parámetros del circuito equivalente propuesto, así como la zona donde serán calculados los valores de Z' y Z'' teóricos y por supuesto la celda donde se estará calculando cada vez la función a optimizar (ver figuras 49 y 50).

🗙 Microsoft Excel - Lib	ио1
Archivo Edición y	Ver Insertar Eormato Herramientas Datos Ve <u>n</u> tana <u>?</u>
	马 🖪 🖤 🐰 🗈 🔍 - 영 - 영 - 🔍 도 - 🔀 취 김 🕼 🔊 100% - 🖓
Arial	10 ▼ N X S = = = = = = = = × × · · · · · · · · · ·
A1 -	fx
A	B C D E F G H
3	
4	Complementos disponibles:
5	Asistente para suma condicional
6	GeneHunter 2.3
7	Herramientas para análisis
8	I Herramientas para análisis - VBA Examinar
9	Solver
10	VBA del Ayudante para Internet
17	
13	
14	
15	
16	
17	
18	GeneHunter 2.3
19	Genetic algorithm based solver of complex problems.
20	
27	
23	
24	
25	

Figura 49. Pantalla de Excel en la herramienta: complementos, en donde se da de alta la aplicación de Genehunter.

Figura 50. Hoja de Excel, en donde se muestra las celdas destino para colocar intervalos, función a optimizar y los resultados del ajuste Genehunter.

							-
Microsoft Excel	- CIRCUITO10					Formula (de
D Aughter Calenda	- Ilan Tarankan	Formate Homoviertes Dates Hockey	2			impedance	Ja
Archivo Edicioi	n <u>v</u> er <u>i</u> nsertar	Formato Herramientas Datos ventana	1				
🗋 🚅 🔚 🔒 🕏	1 🖨 🖪 🖤 .	နီ 🗈 🛍 🕶 🝼 ၊တင်တင် 🍓 Σ 🕶 🕃	🗟 👌 🏹 🛍 📣 95% 🔹 (2 .	\sim		_
Avial	10						_
Aridi	• 10 • 1		00 + 0 1# 1# • 22 • 2				
C41 🗸	<i>f</i> ∗ =IM.S	UM(\$C\$26,IM.DIV(IM.PRODUCT(COMPLE	JO(\$C\$28+\$C\$30,B41*\$C\$29*	\$C\$30*\$C\$28),COMPLEJO	(\$C\$31*\$C\$33,B4	41*\$C\$32*\$C\$33)),	
A	E IM.SU	M(IM.PRODUCT(COMPLEJO(\$C\$31*\$C\$3	3,B41*\$C\$32*\$C\$33),IM.SUM	(COMPLEJO(0,B41*\$C\$27*	\$C\$28),IM.PROD	UCT(COMPLEJO(D	
36 (Z"modelo-Z'	"exp)^2 B41*\$	C\$28*\$C\$29*\$C\$30),COMPLEJO(0,B41*\$(C\$27)),COMPLEJO(0,B41*\$C\$	27*\$C\$30),COMPLEJO(1,B	41*\$C\$29*\$C\$30))),IM.PRODUCT(
37 TOTAL	COMF	LEJO(\$C\$31+\$C\$33,B41*\$C\$32),COMPL	EJO(\$C\$28+\$C\$30,B41*\$C\$29	9*\$C\$30*\$C\$28)))))			
20					,		
20		MODELO			EYD	EDIMENTAL ES	
			7'	7"			
				- <mark>- 2</mark>	21.07270022		
41 0.01	0.062631853	1 34.299545696163+1.215771947930431 34.4006474650554.50045544650505055	34.2995459	-1.215771948	34.97270832	-0.938039795	
42 0.017	0.10601415	34.4996174639521+2.045344630592651	34.49961746	-2.045344631	33.09300969	-1.300343110	
43 0.03	0.100490059	33.12/02/040190+3.49015/795439131 36.0000773340970 / £.40474046107306;	35.12/02/00	-3.490157795	33.47013230	-2.733323479	
44 0.032	0.320725030	40.023307431004043.404743401972001	30.02390743	7 141000000	20.301/9230	-4.J40Z401Z1	
40 0.091	0.071709003	40.3403062624003+7.141023362764191	40.94690626	-7.141023303 4.074700595	JJ.00049921	-0.7 J0540204	
40 0.130	1 707076060	E1 0025445567634 4 03004371034223	47.44202240 E1.000E44E6	4 009940719	40.34370420	2 177201460	
47 0.273	2.000645762	AE 27/2011000000014-4.0209427 19243331	AE 27/20110	4.020342713	JJ.4JJ30009 46 77926622	17 24722972	
40 0.479	5.003043762	40.0740011022002-14.01072020037071 23.010049399374.17.7610394337003;	40.07400119	17 76103943	4J.770ZJJJJJ 34 73636964	17.21733072	
40 0.03Z	9.227010176	33.510040230274-17.70102042373021 25.1432275709544.14.46664400477065	25.31004024	17.70102042	23 09055012	13 35915499	
51 2 512	15 78336149	20.1402270700044-14.40004400477001	20.14322730	10.27065766	20.89879035	9 147665469	
52 4 365	27.42610397	19.0954048833733.7.76728897731028	19 09540488	7 767288977	19 58710319	7 062974954	
53 7 586	47.66424374	17.8277417550215-7.19731090199843i	17 8277/176	7.197310902	18 46295454	6 861185706	
54 13 18	82.8312319	15 8078771278887-8 0677182317729i	15 80787713	8.067718232	16 40244003	7 96438204	
55 22 909	143 9414922	12 1702381122192-9 0333729180786	12 17023811	9.033372918	12 6610892	8 981424343	
56 39,811	250 1398903	7 76565147082815-8 29450021204526	7 765651471	8 294500212	8.252379983	8.172749236	
57 69.183	434 6896091	4 63650335463577-6 04187483587055i	4.636503355	6.041874836	5.209269698	5.898110786	
50 420.220	755 4000007	2.4050000007400011-0.041074000070001	2.4650000000	2.02030303000	2 002400072	0.744040440	

Figura 51. Hoja de Excel, en donde se muestra la forma de incluir la fórmula total de impedancia, así como celdas destino de datos y cálculo de Z.

2. Se debe elegir ahora la opción de Genehunter, ubicada en las herramientas, para empezar a configurar al Algoritmo con la página de Excel.

Figura 52. Hoja de Excel donde se muestra la manera de buscar el complemento Genehunter para configurarlo e iniciarlo.

3. Habrá ahora que ubicar las celdas que corresponderán a los parámetros a calcular, así como las celdas que lo limitarán por los intervalos, y lo más importante: la función a optimizar.

Figura 53. Manera de configurar el intervalo de celdas con parámetros a calcular y sus intervalos respectivos.

4. En la sección de opciones podremos establecer la tasa de mutación, cruzamiento, y criterio de terminación, fin del Algoritmo, entre otros.

N	licrosoft	Excel - CIRCUITO10					
8	<u>A</u> rchivo	<u>E</u> dición <u>V</u> er <u>I</u> nserta	r <u>F</u> ormato <u>H</u> e	erramientas Da <u>t</u> os Ve <u>n</u> tan	a <u>?</u>		
	🖻 🔒	a 🗞 🦉	አ 🖻 🛍 🔹	🛇 ΙΟ + ΟΙ + 🍓 Σ		1 🛍 🚯 90%	• 🝳 🗸
Aria	al	- 10 - N	<u>к s</u> = =	5 € % 0		🕸 🕫 🔛 🔹 🖄	• <u>A</u> • .
	J36	▼ f _x					
	A	В		С		D	E
8							
9		GeneHunter Ontions			? X	L	
10		Population parameters		Screen update		áfica Nyquist. Al	goritmo
12		Population size:	50	C Ne <u>v</u> er C Alwa <u>v</u> s	🖲 <u>S</u> mart	Genetico	
13 14		Chromosome length:	32-bit 💌	Set random seed			1
15 16		Crossover rate:	0.8	Show graph Sto	ore gr <u>a</u> ph		
17		Mutation rate:	0.05		olacions	0.95	1.05
18		Generation gap:	0.98	Stop evolution when	min		
19		🔽 <u>E</u> litist strate	gy				
20		Diversity op	erator	Generations > 12000	,		
21	Z := Rs		. 1	Best fitness unchanged	1	$RI R2 + j \cdot \omega_{\underline{m}} \cdot LI F$	<u>aj</u>
22	m			arter 175 gene	rations	$+ Rr + j \cdot \omega_{m} \cdot CrF$	&+1]+(R2+R1+j
24		Parámetros	1	Resultado		Rango	
25		a evaluar			m	ínimo	máximo
		P	1	<u>^</u>	·	<u>^</u>	4000

Figura 54. Ventana de opciones de Genehunter: exactitud, tasas de mutación, cruzamiento y criterio de terminación del programa.

ANEXO II. Utilización del la hoja Excel para algoritmo genético

Esta sección es añadida como una breve explicación de cómo poder realizar un ajuste de datos, ejemplificando con uno de los circuitos equivalentes estudiados en este trabajo.

Los 7 circuitos estudiados están disponibles en su hoja de cálculo correspondiente en el CD donde se encuentra la tesis. Con ellos, se tendrá la opción de realizar un ajuste de datos de algún experimento en el cual el circuito coincida con uno de los propuestos aquí. Evidentemente se requiere la instalación del algoritmo Genehunter.

Aquí se muestra la hoja principal de uno de los ejemplos estudiados. Mostramos la fórmula total de impedancia (1) (como objeto solamente), el bosquejo del circuito equivalente (2), los gráficos de Nyquist para los datos experimentales y los del modelo (AG) (3). Un poco más abajo se puede ver la tabla donde se desplegarán los resultados para cada parámetro, así como las celdas que contienen los intervalos establecidos (los cuales pueden ser modificados de acuerdo al caso que se tenga) (4).

Un poco más abajo se encuentra la celda donde se localiza la función a optimizar (5) y la tabla de datos y calculo de nuevos valores de impedancia.

Lo que se deberá hacer es modificar la columna de frecuencia (columna A), así como las columnas donde se muestran los datos experimentales (columna F y G). Es lo único que se debe modificar, además de los intervalos mínimos y máximos para cada parámetro, si así se desea.

NOTA: SI SE TIENE OTRO CIRCUITO QUE AJUSTAR DISTINTO A LOS PRESENTADOS AQUÍ, SE PUEDE INTRODUCIR LA FORMULA EN LA CELDA C41, PERO CUIDANDO QUE SEA CORRECTA, PUES SE DEBERA INTRODUCIR COMO EXCEL LO PIDE. Por ejemplo para este circuito la fórmula que se introdujo en la sintaxis de Excel fue de la siguiente manera:

=IM.SUM(\$C\$26,IM.DIV(IM.PRODUCT(COMPLEJO(\$C\$28+\$C\$30,B41*\$C\$29*\$C\$30 *\$C\$28),COMPLEJO(\$C\$31*\$C\$33,B41*\$C\$32*\$C\$33)),IM.SUM(IM.PRODUCT(COM PLEJO(\$C\$31*\$C\$33,B41*\$C\$32*\$C\$33),IM.SUM(COMPLEJO(0,B41*\$C\$27*\$C\$28), IM.PRODUCT(COMPLEJO(0,B41*\$C\$28*\$C\$29*\$C\$30),COMPLEJO(0,B41*\$C\$27)), COMPLEJO(0,B41*\$C\$27*\$C\$30),COMPLEJO(1,B41*\$C\$29*\$C\$30))),IM.PRODUCT(COMPLEJO(\$C\$31+\$C\$33,B41*\$C\$32),COMPLEJO(\$C\$28+\$C\$30,B41*\$C\$29*\$C\$3 0*\$C\$28)))))

$$\label{eq:Formula original:} \begin{split} F & \text{ formula original:} \\ Z_m := Rs + \left(j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + R \right) \cdot \underbrace{\left((R1 \cdot R2 + j \cdot \textcircled{w}_m \cdot \text{L1} \cdot R2) \right) \cdot \underbrace{\left(j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + R \right) + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr} + 1 \right] + \left((R2 + R1 + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + Rt) + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr} + 1 \right) + \underbrace{\left((R2 + R1 + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + Rt) + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr} + 1 \right) + \underbrace{\left((R2 + R1 + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + Rt) + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr} + 1 \right) + \underbrace{\left((R2 + R1 + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + Rt) + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr} + Rt + Rt) + i \cdot \underbrace{\left((R2 + R1 + Rt) \cdot (R2 + Rt) + j \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + Rt) + i \cdot \underbrace{\left((R2 + R1 + Rt) \cdot (R2 + Rt) + i \cdot \textcircled{w}_m \cdot \text{Cr}\cdot \text{Rr}\cdot \text{Rt} + Rt + Rt) + i \cdot \underbrace{\left((R2 + R1 + Rt) \cdot (R2 + Rt) + i \cdot (R2 + Rt) +$$

NOTA: PONER ATENCIÓN A LOS PARÉNTESIS Y EN DAR DE ALTA A LOS NÚMEROS COMPLEJOS COMO COMPLEMENTOS DE EXCEL

En la siguiente sección, como se verá a continuación se recomienda pasar los datos como lo piden las columnas, es decir, frecuencia, datos experimentales, y los datos que arrojó el ajuste con Algoritmos Genéticos, para que de esta manera se obtengan también los gráficos de errores residuales que serán presentados en 2 hojas aparte de la principal:

8	Archivo Edici	ón <u>V</u> er <u>I</u> nsertar	Eormato Herramientas Datos Ventana ?		Esc	riba una pregunta	• _ 8 ×				
Ľ	🐸 🖬 🖏	🎒 🖪 🚏 🐰 🖣	י על אין איז	100% • 🕄 •							
Ari	al	• 10 • N .	₭ § 🗐 🗃 🗃 🛱 🕏 % 🚥 號 🖓	谭 律 🔠 • 🏖 • 🗛 • 🚬							
G102 🔻 🏂											
	A	B	С	D	E	F					
70							-				
71			DATOS PARA GRÁFIC	O DE ERRORES RESIDUALES	CON MEJOR AJUSTE						
72											
73			MODELO	EXPERIMENT	ALES		Expe				
74	frecuencia	Ζ	- Z″	Z″	Ζ"	I	dodulo,				
75	0.01	34.74020366	-1.300944641	35.15925928	-0.961621579	1					
76	0.017	34.99531595	-2.176681753	33.63764763	-1.550504424						
77	0.03	35.78113916	-3.650882672	35.00153665	-2.69981493						
78	0.052	37.8000465	-5.473952696	38.35218581	-4.583101788						
79	0.091	42.09050292	-6.316633258	38.5309209	-6.621135399						
80	0.158	47.41163971	-3.146230165	48.12111396	-6.485142271						
81	0.275	49.21664901	4.765163212	53.19640751	3.225650408						
82	0.479	44.09615099	13.1261198	43.95447186	17.88295877						
83	0.832	34.34798619	16.27849925	32.21122695	17.62392573						
84	1.445	26.13875174	13.80687478	25.02955487	12.96801576						
85	2.512	21.86597548	10.06653318	20.65874224	9.569504748						
86	4.365	19.95530463	7.753678663	19.05233469	6.841032215						
87	7.586	18.60662697	7.294074105	19.29788983	6.652499586						
88	13.18	16.47093788	8.227480301	16.50124384	7.714570121						
89	22.909	12.70049614	9.152754201	13.14074978	9.2689205						
90	39.811	8.264640504	8.294687421	8.613287932	8.580665208						
91	69.183	5.196286974	5.981316044	5.149531162	5.673213404						
92	120.226	3.776549732	3.763792268	3.629364465	3.712255092						
93	208.93	3.242433052	2.235523338	3.197702638	2.136100146						
94	363.078	3.05751002	1.300299006	3.243368963	1.31806942						
95	630.957	2.995347888	0.750930565	2.914529099	0.745734346						
96	1.10E+03	2.974669557	0.432818177	3.044161736	0.429242031						
97	1.91E+03	2.967800657	0.249110768	3.074829117	0.25427448						
98	3.31E+03	2.965525885	0.143345829	2.917114503	0.146737045						
99	5.75E+03	2.964772814	0.082488455	2.988632296	0.08185363						
100	1.00E+04	2.964523435	0.047464537	2.887438481	0.045750615						
101											
100											

	E	F	G	Н		J	Ī
70			-				
71	CON MEJOR AJUSTE		%Eim	i=(Z''exp - Z''mod)/Z*11	00		
72							
73	MLES		Experimentales con err	or aleatorio vs Algor	itmo Genético		
74	Z	I	Modulo, valor teórico Z	%Ereal AG	%Eimag AG		
75	-0.961621579		34.76455389	1.205410614	0.976060455		
76	-1.550504424		35.06294457	-3.872088697	1.785866351		
77	-2.69981493		35.96691346	-2.167554671	2.644285123		
78	-4.583101788		38.19434086	1.445605033	2.332415977		
79	-6.621135399		42.56184079	-8.363317821	-0.715434613		
80	-6.485142271		47.51591675	1.49312967	-7.026933994		
81	3.225650408		49.44679282	8.048567516	-3.113473528		
82	17.88295877		46.00832048	-0.307942404	10.33908414		
83	17.62392573		38.0101788	-5.621544806	3.539647855		
84	12.96801576		29.56119304	-3.75220605	-2.837703543		
85	9.569504748		24.07189178	-5.015115759	-2.064766794		
86	6.841032215		21.40872989	-4.217765125	-4.262963998		
87	6.652499586		19.98524666	3.458865824	-3.210240681		
88	7.714570121		18.41149714	0.164603437	-2.785814626		
89	9.2689205		15.65488779	2.812243937	0.742044917		
90	8.580665208		11.70923234	2.977542998	2.442327371		
91	5.673213404		7.923227874	-0.590110659	-3.888600017		
92	3.712255092		5.331834592	-2.760499486	-0.96659367		Ĩ
93	2.136100146		3.938392653	-1.135753026	-2.52446114		
94	1.31806942		3.322520884	5.593913476	0.534847343		
95	0.745734346		3.088042371	-2.617152853	-0.168269024		
96	0.429242031		3.00599244	2.311788205	-0.118967245		
97	0.25427448		2.978237216	3.593684872	0.173381457		
98	0.146737045		2.968988346	-1.630568265	0.114221263		
99	0.08185363		2.965920125	0.804454626	-0.021403993		
100	0.045750615		2.964903385	-2.599914545	-0.057807023		
1.00							

Aquí se presentan algunas generalidades para la utilización del programa. Debe partirse de un formato muy específico, tal como el siguiente ejemplo:

🖾 Cire5 - Bloc di	e notas			
Archivo Edición	Puseer Aunde			
	<u>b</u> uscai Ay <u>u</u> ua			
CIRCUITO 5				
20	00/1 005	40/5 0/7	4 1050105 07	4 4050405 07
0.010000	2264.395	-1205.907	1.485849E-07	1.485849E-07
0.01/000	1969.434	-973.8011	2.0/109/E-0/	2.0/109/E-0/
0.030000	1728.841	-/3/.5400	2.830571E-07	2.8305/1E-0/
0.052000	1551.900	-500.8344	3.003380E-07	3.003380E-07
0.091000	1414.372	-438.8823	4.559829E-07	4.559829E-07
0.158000	1310.050	-349.1801	5.4401/2E-0/	5.4401/2E-0/
0.275000	1227.997	-290.3742	0.280249E-07	0.280249E-07
0.479000	1101.055	-261.3290	7.000448E-07	7.000448E-07
0.832000	1101.072	-264.33/3	7.798896E-07	7.798896E-07
1.445000	1034.301	-304.0595	8.001430E-0/	8.001430E-07
2.512000	935.0858	-385.1828	9.///549E-0/	9.///549E-0/
4.365000	764.3724	-483.1566	1.222934E-06	1.222934E-06
7.586000	512.0318	-523.4483	1.865064E-06	1.865064E-06
13.18300	265.0603	-446.2784	3./1165/E-06	3./1165/E-06
22.90900	113.8002	-309.5673	9.192666E-06	9.192666E-06
39.81100	47.43251	-191.818/	2.561195E-05	2.561195E-05
69.18300	22.82210	-113.3802	7.4/6121E-05	7.4/6121E-05
120.2260	14.30586	-65.85916	2.201631E-04	2.201631E-04
208.9300	11.43506	-38.02150	6.343588E-04	6.343588E-04
363.0/80	10.4/683	-21.90394	1.696219E-03	1.696219E-03
630.9570	10.15822	-12.60941	3.814076E-03	3.814076E-03
1096.000	10.05251	-7.260139	0.503532E-03	0.503532E-03
1905.000	10.01740	-4.177172	8.489177E-03	8.489177E-03
3311.000	10.00576	-2.403401	9.443616E-03	9.443616E-03

Formato utilizado para la utilización del programa Equivalent Circuit

La primera columna deberá contener los datos de frecuencias (con exactamente 8 caracteres cada valor), así como el número total de líneas en la parte superior. En la segunda columna se colocan los datos de impedancia real, Z'; y en la tercera columna se alimentan los valores de la impedancia imaginaria, Z''. Por último, en la cuarta y quinta columna se generan los valores correspondientes a un factor de peso, el cual es: $1/(Z'^2 + Z''^2)$.

NOTA: Se debe tener cuidado de que no queden en la parte inferior de los datos líneas vacías, de ser así eliminarlas, ya que su presencia conduce a un error a la hora de realizar la lectura de los datos.

Una vez teniendo el formato requerido se mandará llamar desde el programa mediante opciones, para ver así el espectro y proceder al ajuste de datos. La siguiente es la pantalla de entrada al programa de ajuste:

Pantalla de entrada al programa Equivalent Circuit

Y el menú aparece enseguida:

🏀 EQUIV	CRT
Auto	- III 🖻 🖻 🛃 🗛
	*** Master Menu ***
	Quit0
	Read Data1
	Data Cruncher2
	NLLSFIT3
	Simulate4
	Plot Data5
	Hard Copy Plot6
	Set System7
	Your choice:

Pantalla principal del programa Equivalent Circuit

Al leer los datos podemos solicitar ver los datos experimentales, en este caso mediante un diagrama de Nyquist:

Ejemplo de un espectro experimental, gráfico de Nyquist. Equivalent Circuit

Y se procede a realizar el ajuste de acuerdo al circuito equivalente propuesto (para este caso el código introducido fue R(C(RW)), circuito de Randles), los valores iniciales obtenidos por subrutina, imprimiéndose después en pantalla los resultados:

S EQUIVCRT	_ 🗆 ×
Data file: CIRC5.TXT NLLS-Fit of R(C[RW])	
Iteration: 4 Function weight Lambda : 1.3E-004 Chi-Sgrd : 3.84E-014	
Par., New value, Rel. Err. R-1 1.0000E+001 0.00 % C-2 2.0000E-005 0.00 % R-3 1.0000E+003 0.00 % W-4 2.2361E-003 0.00 %	
Print correlation factors? [y/n]:	

Resultados de ajuste. Equivalent Circuit

Una vez realizado el ajuste podemos solicitar ver el diagrama de los datos experimentales y los datos encontrados por el ajuste:

Diagrama de Nyquist mostrando el ajuste. Equivalent Circuit

Éste es un breve bosquejo acerca de la utilización del programa para conocer la manera de operar del mismo. El programa cuenta con su manual, el cual puede guiarnos satisfactoriamente para conocer paso a paso el proceso de ajuste de datos.

ANEXO IV. Resultados del Algoritmo Genehunter al ajustar circuitos equivalentes teóricos ideales

Parámetros Genehunte	r		V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F. optimiz	3.41E+12	3.17E+01	3.87E-04	3.17E+01	3.02E-02	3.23E-02		3.87E-04		
Tasa mutación :	0.1	Rs	0	10.0	9.99	10.0	10.0	9.99	10	9.99	0.03	0.004
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1E-05	1E-05	0.00	0.000
Tasa cruzamiento :	1	F. optimiz	3.41E+12	3.00E-02	2.92E-03	2.89E-03	3.68E-02	2.71E-05		2.71E-05		
Tasa mutación :	J. 05	Rs	0	10.0	10.0	10.0	10.0	10.0	10	10.0	0.00	0.004
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	1	F. optimiz	3.41E+12	2.69E-05	3.00E-02	2.51E-03	2.51E-03	2.69E-05		2.69E-05		
Tasa mutación :	0	Rs	0	10.0	10.0	10.0	10.0	10.0	10	10.0	0.00	0.005
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.9	F. optimiz	3.41E+12	7.42E-03	8.69E-04	2.88E-05	5.61E-03	4.56E+00		2.88E-05		
Tasa mutación :	0.1	Rs	0	10.0	9.99	10.0	9.98	9.99	10	10.0003	0.00	0.008
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.9	F. optimiz	3.41E+12	3.00E-02	6.37E-02	3.00E-02	3.00E-02	4.93E-03		4.93E-03		
Tasa mutación : (0.05	Rs	0	10.0	9.96	10.0	10.0	10.0	10	10.0	0.00	0.016
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.9	F. optimiz	3.41E+12	3.17E+01	3.00E-02	2.69E-05	3.17E+01	3.26E+04		2.69E-05		
Tasa mutación :	0	Rs	0	9.999951	10	10	10.00024	9.992271	10	10	0.00	0.003
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	9.99E-06	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.8	F. optimiz	3.41E+12	3.14E-04	5.18E-03	3.02E-02	1.06E-03	3.17E+01		3.14E-04		
Tasa mutación :	0.1	Rs	0	10.0	10.0	10.0	10.0	9.98	10	10.0	0.03	0.009
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.8	F. optimiz	3.41E+12	9.80E-03	2.84E-05	1.00E-01	2.51E-03	3.17E+01		2.84E-05		
Tasa mutación : (0.05	Rs	0	10.0	10.0	10.0	10.01	9.99	10	10.0	0.00	0.009
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1.00E-05	1E-05	0.00	0.000
Tasa cruzamiento :	0.8	F. optimiz	3.41E+12	2.69E-05	3.00E-02	2.69E-05	3.00E-02	2.51E-03		2.69E-05		

ESPECTRO 1. Representación de un electrodo idealmente polarizable

Tasa de mutación :	0	Rs	0	10.0	10.0	10.0	10.0	10.0	10.0	0.00	0.004
		Cdl	1E-06	1E-05	1E-05	1E-05	1E-05	1E-05	1E-05	0.00	0.000

	E min	E max
Rs	0.00	0.03
Cdl	0.00	0.00

ESPECTRO 2. Interfase electroquímica -transferencia de carga y proceso de difusión-

Parámetros Genehun	ter		V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	2.90E+07	1.75E+00	4.79E+00	9.71E+00	4.03E+00	1.25E+01		1.75E+00		
Tasa de mutación :	0.1	Rs	0	9.71	10.16	9.48	9.97	9.96	10	9.71	2.86	0.233
		Rt	10	1000	999	1000	1000	1000	1000	1000	0.01	0.402
		Cdl	1E-06	2E-05	2E-05	1.99E-05	2E-05	2.01E-05	2.00E-05	2E-05	0.14	0.000
		σ	10	316	316	316	316	316	316	316	0.08	0.118
Tasa cruzamiento :	1	F.Optimizar	2.90E+07	1.98E+00	1.89E+00	7.75E+00	5.92E+00	3.11E+00		1.89E+00		
Tasa de mutación :	0.05	Rs	0	9.84	9.98	10.10	10.34	9.62	10	9.98	0.18	0.243
		Rt	10	1000	1000	999	999	1000	1000	1000	0.02	0.685
		Cdl	1E-06	2E-05	2E-05	2E-05	2E-05	2E-05	2.00E-05	2E-05	0.11	0.000
		σ	10	316	316	316	316	316	316	316	0.08	0.140
Tasa cruzamiento :	1	F.Optimizar	2.90E+07	8.07E-04	2.59E-01	7.07E-02	2.58E-01	8.18E-01		8.07E-04		
Tasa de mutación :	0	Rs	0	9.99	9.91	10.05	9.92	10.25	10	9.99	0.06	0.125
		Rt	10	1000	1000	1000	1000	1000	1000	1000	0.00	0.176
		Cdl	1E-06	2E-05	2E-05	2E-05	2E-05	2E-05	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	316	316	316	316	316	0.07	0.016
Tasa cruzamiento :	0.9	F.Optimizar	2.90E+07	1.41E-01	1.50E+00	5.60E-01	1.75E-01	2.20E-02		2.20E-02		
Tasa de mutación :	0.1	Rs	0	9.97	10.12	9.92	10.10	9.98	10	9.98	0.21	0.075
		Rt	10	1000	1000	1000	1000	1000.	1000	1000	0.00	0.185
		Cdl	1E-06	2E-05	2E-05	2E-05	2E-05	2E-05	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	316	316	316	316	316	0.08	0.030

Tasa cruzamiento :	0.9	F.Optimizar	2.90E+07	2.94E-01	4.75E+00	1.44E+01	2.45E+00	2.50E+00		2.94E-01		
Tasa de mutación :	0.05	Rs	0	10.01	9.97	10.96	10.27	10.28	10	10.01	0.15	0.355
		Rt	10	1000	1000	999	1000	1000	1000	1000	0.01	0.526
		Cdl	1E-06	2E-05	2E-05	2E-05	2E-05	2E-05	2.00E-05	2E-05	0.04	0.000
		σ	10	316	316	316	316	316	316	316	0.06	0.146
Tasa cruzamiento :	0.9	F.Optimizar	2.90E+07	1.64E-03	1.44E-02	1.44E-02	1.21E-03	4.45E-02		1.21E-03		
Tasa de mutación :	0	Rs	0	9.99	9.98	9.98	10.01	10.02	10	10.01	0.10	0.017
		Rt	10	1000	1000	1000	1000	1000	1000	1000	0.00	0.009
		Cdl	1E-06	2E-05	2E-05	2E-05	2E-05	2E-05	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	316	316	316	316	316	0.07	0.004
Tasa cruzamiento :	0.8	F.Optimizar	2.90E+07	4.18E+00	9.10E+01	3.66E+02	1.36E+01	6.54E+00		4.18E+00		
Tasa de mutación :	0.1	Rs	0	10.52	12.62	15.23	9.34	9.44	10	10.52	5.22	2.237
		Rt	10	999	998	999	1000	1001	1000	999	0.06	2.413
		Cdl	1E-06	2E-05	2.01E-05	2.02E-05	1.99E-05	2E-05	2.00E-05	2E-05	0.03	0.000
		σ	10	316	316	316	316	316	316	316	0.09	0.108
Tasa cruzamiento :	0.8	F.Optimizar	2.90E+07	3.18E+00	1.12E+00	2.96E+00	1.20E+01	3.18E+00		1.12E+00		
Tasa de mutación :	0.05	Rs	0	10.07	9.87	9.69	10.21	9.57	10	9.87	1.25	0.235
		Rt	10	999	1000	1000	1000	1000	1000	1000	0.01	0.411
		Cdl	1E-06	2E-05	2E-05	2E-05	2.01E-05	2E-05	2.00E-05	2E-05	0.04	0.000
		σ	10	316	316	316.	316	316	316	316	0.10	0.055
Tasa cruzamiento :	0.8	F.Optimizar	2.90E+07	2.31E-05	4.14E-05	4.58E-02	3.06E-01	4.39E-02		2.31E-05		
Tasa de mutación :	0	Rs	0	10.00	10.00101	10.0211	9.887456	10.02873	10	10.00	0.01	0.051
		Rt	10	1000	1000	1000	1000	1000	1000	1000	0.00	0.091
		Cdl	1E-06	2E-05	2E-05	2E-05	2E-05	2E-05	2.00E-05	2E-05	0.00	0.000
		σ	10	316	316	316	316	316	316	316	0.07	0.005

	E min	E max
Rs	0.01	5.22
Rt	0.00	0.06
Cdl	0.00	0.14
σ	0.06	0.10

Parámetros Genehunter			V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F. Optimizar	2.60E+11	1.08E+03	1.78E+04	5.73E+02	1.33E+04	1.65E+03		5.73E+02		
Tasa de mutación :	0.1	Rs	0	16.64	9.09	9.31	47.58	19.40	10	9.31	6.90	14.175
		Rt	1	198	190	197	161	192	200	197	1.35	13.756
		Cdl	1E-06	1.1E-05	2.0E-05	9.92E-06	1.82E-05	9.64E-06	1.00E-05	9.9E-06	0.75	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	5.03	0.000
		Rr	-100000	-508	-492	-491	-501	-496	-500	-491	1.72	6.142
Tasa cruzamiento :	1	F. Optimizar	2.60E+11	3.48E+02	2.46E+03	4.17E+02	5.37E+02	2.78E+02		2.78E+02		
Tasa de mutación :	0.05	Rs	0	7.18	14.51	7.00	16.23	9.64	10	9.64	3.56	3.794
		Rt	1	203	194	198	195	200	200	200	0.02	3.225
		Cdl	1E-06	9.32E-06	1.03E-05	9.55E-06	1.02E-05	1.1E-05	1.00E-05	1.1E-05	7.61	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	1.92	0.000
		Rr	-100000	-494	-499	-494	-501	-500	-500	-500	0.02	2.808
Tasa cruzamiento :	1	F. Optimizar	2.60E+11	3.76E+02	2.58E+02	5.74E+02	4.42E+01	1.12E+02		4.42E+01		
Tasa de mutación :	0	Rs	0	10.13	9.49	4.59	7.81	10.14	10	7.81	21.89	2.102
		Rt	1	195	195	208	202	200	200	202	1.21	4.868
		Cdl	1E-06	1E-05	9.8E-06	8.8E-06	9.7E-06	9.5E-06	1.00E-05	9.7E-06	2.97	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.21	0.000
		Rr	-100000	-490	-497	-502	-500	-501	-500	-500	0.04	4.270
Tasa cruzamiento :	0.9	F. Optimizar	2.60E+11	1.61E+04	7.44E+02	2.17E+03	1.72E+03	2.58E+03		7.44E+02		
Tasa de mutación :	0.1	Rs	0	52.34	9.08	15.91	10.59	26.05	10	9.08	9.21	15.926
		Rt	1	154	193	183	195	188	200	193	3.59	14.889
		Cdl	1E-06	1.67E-05	9.36E-06	9.94E-06	9.07E-06	1.27E-05	1.00E-05	9.4E-06	6.44	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	2.40	0.000
		Rr	-100000	-502	-490	-489	-483	-508	-500	-490	2.03	9.392
Tasa cruzamiento :	0.9	F. Optimizar	2.60E+11	5.51E+02	4.12E+02	2.40E+03	1.82E+03	5.19E+03		4.12E+02		
Tasa de mutación :	0.05	Rs	0	7.46	10.86	13.44	14.60	33.42	10	10.87	8.66	9.070
		Rt	1	195	194	205	191	172	200	194	3.02	10.826
		Cdl	1E-06	9.45E-06	9.56E-06	8.46E-06	1.1E-05	1.38E-05	1.00E-05	9.6E-06	4.42	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	1.15	0.000

ESPECTRO 3. Fenómeno de pasivación

		Rr	-100000	-492	-493	-508	-483	-495	-500	-493	1.46	8.277
Tasa cruzamiento :	0.9	F. Optimizar	2.60E+11	4.74E+02	4.48E+02	5.28E+02	1.20E+02	7.79E+01		7.79E+01		
Tasa de mutación :	0	Rs	0	14.59	11.40	7.69	10.73	11.61	10	11.61	16.08	2.203
		Rt	1	195	193	197	196	196	200	196	1.97	1.409
		Cdl	1E-06	1.07E-05	1E-05	9.73E-06	9.76E-06	1.01E-05	1.00E-05	1E-05	1.47	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.49	0.000
		Rr	-100000	-495	-490	-489	-498	-498	-500	-498	0.43	3.815
Tasa cruzamiento :	0.8	F. Optimizar	2.60E+11	3.08E+03	3.13E+04	4.51E+03	1.10E+04	7.35E+03		3.08E+03		
Tasa de mutación :	0.1	Rs	0	13.00	62.69	22.47	40.54	32.07	10	13.00	30.05	16.989
		Rt	1	206	126	184	153	166	200	206	2.83	27.083
		Cdl	1E-06	8.7E-06	2.1E-05	1.5E-05	1.3E-05	1.2E-05	1.0E-05	8.7E-06	13.22	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	9.23	0.000
		Rr	-100000	-516	-494	-491	-486	-474	-500	-516	3.27	13.813
Tasa cruzamiento :	0.8	F. Optimizar	2.60E+11	4.87E+02	2.44E+03	9.51E+02	3.19E+02	7.56E+02		3.19E+02		
Tasa de mutación :	0.05	Rs	0	5.56	10.19	16.41	6.51	14.00	10	6.51	34.89	4.185
		Rt	1	210	190	188	208	197	200	208	3.83	8.911
		Cdl	1E-06	9.7E-06	1.1E-05	1.1E-05	9.3E-06	1.2E-05	1.0E-05	9.3E-06	6.60	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	1.12	0.000
		Rr	-100000	-505	-488	-490	-504	-507	-500	-504	0.77	7.991
Tasa cruzamiento :	0.8	F. Optimizar	2.60E+11	3.11E+01	8.25E+00	1.54E+01	5.30E+00	6.33E+01		5.30E+00		
Tasa de mutación :	0	Rs	0	11.04	10.69	9.19	10.24	11.71	10	10.24	2.36	0.842
		Rt	1	199	200	200	199	196	200	199	0.44	1.382
		Cdl	1E-06	1.0E-05	1.0E-05	9.8E-06	1.0E-05	1.0E-05	1.00E-05	1E-05	0.82	0.000
		Cr	1E-11	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.24	0.000
		Rr	-100000	-498	-500	-499	-499	-498	-500	-499	0.11	0.731

	E min	E max
Rs	2.36	34.89
Rt	0.02	3.83
Cdl	0.75	13.22
Cr	0.21	9.23
Rr	0.02	3.27

ESPECTRO 4 .	Fenómeno	de electrodo	bloqueante
---------------------	----------	--------------	------------

Parámetros Genehu	Inter		V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	3.28E+24	8.58E+02	4.30E+01	1.03E+01	8.43E+00	2.27E+02		8.43E+00		
Tasa de mutación :	0.1	Rs	0	14.57	9.88	9.98	9.70	11.80	10	9.70	3.02	1.855
		Rt	1E-06	1.00E-04	1.00E-04	1.00E-04	9.98E-05	1.00E-04	1.00E-04	1E-04	0.21	0.000
		Cdl	1000	1494	1502	1500	1501	1497	1500	1501	0.06	2.641
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.19	0.000
Tasa cruzamiento :	1	F.Optimizar	3.28E+24	1.06E+02	3.01E+02	5.01E+01	3.03E+02	1.97E+01		1.97E+01		
Tasa de mutación :	0.05	Rs	0	7.81	8.76	9.46	8.54	9.88	10	9.88	1.16	0.723
		Rt	1E-06	9.9E-05	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04	0.06	0.000
		Cdl	1000	1502	1508	1500	1508	1502	1500	1502	0.10	3.227
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.14	0.000
Tasa cruzamiento :	1	F.Optimizar	3.28E+24	4.70E-01	1.54E-03	2.22E+01	1.21E+00	1.68E-04		1.68E-04		
Tasa de mutación :	0	Rs	0	9.99	10.00	10.40	9.95	10.00	10	10.00	0.01	0.165
		Rt	1E-06	1E-04	1E-04	0.0001	9.99E-05	1E-04	1.00E-04	1E-04	0.00	0.000
		Cdl	1000	1500	1500	1500	1500	1500	1500	1500	0.00	0.143
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.19	0.000
Tasa cruzamiento :	0.9	F.Optimizar	3.28E+24	5.94E+01	7.19E+01	2.63E+01	4.83E+02	1.36E+01		1.36E+01		
Tasa de mutación :	0.1	Rs	0	9.84	11.01	9.88	6.28	9.71	10	9.71	2.85	1.604
		Rt	1E-06	1.00E-04	1.00E-04	9.98E-05	9.89E-05	9.98E-05	1.00E-04	9.98E-05	0.21	0.000
		Cdl	1000	1499	1498	1498	1509	1501	1500	1501	0.06	3.946
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	3.20E-03	0.0032	1.15	0.000
Tasa cruzamiento :	0.9	F.Optimizar	3.28E+24	1.45E+03	1.97E+01	1.30E+02	3.05E+02	3.58E+02		1.97E+01		
Tasa de mutación :	0.05	Rs	0	15.71	10.12	7.63	7.79	8.20	10	10.1164	1.16	3.042
		Rt	1E-06	0.0001	9.98E-05	9.94E-05	9.98E-05	9.84E-05	1.00E-04	1E-04	0.17	0.000
		Cdl	1000	1483	1501	1500	1508	1503	1500	1501	0.05	8.254
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.13	0.000
Tasa cruzamiento :	0.9	F.Optimizar	3.28E+24	9.82E-01	4.94E-01	4.03E-02	4.71E-01	1.22E+00		4.03E-02		
Tasa de mutación :	0	Rs	0	9.95	9.99	9.98	10.01	9.92	10	9.98	0.18	0.032
		Rt	1E-06	9.99E-05	1E-04	1E-04	1E-04	9.99E-05	1.00E-04	1E-04	0.02	0.000
		Cdl	1000	1500	1500	1500	1500	1500	1500	1500	0.00	0.044
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.19	0.000

Tasa cruzamiento :	0.8	F.Optimizar	3.28E+24	1.33E+02	1.89E+03	1.26E+03	8.96E+02	1.10E+03		1.33E+02		
Tasa de mutación :	0.1	Rs	0	7.65	16.71	16.91	14.30	8.68	10	7.65	23.51	3.948
		Rt	1E-06	9.94E-05	1.02E-04	1.02E04	1.00E-04	9.94E-05	1.00E-04	9.9E-05	0.58	0.000
		Cdl	1000	1502	1483	1491	1496	1508	1500	1502	0.13	8.456
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.27	0.000
Tasa cruzamiento :	0.8	F.Optimizar	3.28E+24	9.48E+01	9.48E+01	2.12E+00	1.12E+02	3.40E+01		2.12E+00		
Tasa de mutación :	0.05	Rs	0	7.80	7.804273	9.757754	7.582461	10.52784	10	9.75775	2.42	1.209
		Rt	1E-06	9.97E-05	9.97E-05	9.99E-05	9.98E-05	0.0001	1.00E-04	1E-04	0.06	0.000
		Cdl	1000	1502	1502	1500.43	1501.894	1500.206	1500	1500.43	0.03	0.849
		σ	1E-11	0.0032	0.0032	0.003162	0.003162	0.003165	3.20E-03	0.00316	1.20	0.000
Tasa cruzamiento :	0.8	F.Optimizar	3.28E+24	4.72E-01	2.30E+01	2.09E-03	1.46E-03	1.52E-04		1.52E-04		
Tasa de mutación :	0	Rs	0	9.99	10.51	9.99	9.99	10.00	10	10.00	0.03	0.205
		Rt	1.00E-06	1.00E-04	0.00	0.000						
		Cdl	1000	1500	1499	1500	1500	1500	1500	1500	0.00	0.301
		σ	1E-11	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	0.0032	1.19	0.000

	E min	E max
Rs	0.01	23.51
Rt	0.00	0.58
Cdl	0.00	0.13
σ	1.13	1.27
	Rs Rt Cdl σ	E min Rs 0.01 Rt 0.00 Cdl 0.00 σ 1.13

ESPECTRO 5. Fenómeno de electrodo con capa semiconductora

Parámetros Genehunte	er		V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	3.28E+24	2.79E+01	6.73E-01	1.39E+01	3.68E+00	1.15E+01		6.73E-01		
Tasa de mutación :	0.1	Rs	0	0.60	0.21	0.11	0.14	0.22	0.15	0.21	43.25	0.177
		Cdl	1E-06	4.34E-04	4.53E-04	4.46E-04	4.43E-04	4.48E-04	4.50E-04	4.53E-04	0.64	0.000
		Rt	1	67.87	68.62	67.86	68.00	68.02	69	68.62	0.56	0.279
		Cr	1E-11	0.40	0.40	0.39	0.40	0.37	0.4	0.40	0.88	0.011
		R1	100	414	432	414	454	442	418	432	3.37	15.612
		L1	0.1	621	347	593	388	407	328	347	5.88	112.793

Tasa cruzamiento :	1	F.Optimizar	3.28E+24	3.35E+00	8.16E-01	1.88E-01	7.13E+00	5.97E+00		1.88E-01		
Tasa de mutación :	0.05	Rs	0	0.31	0	0.17	0.13	0.14	0.15	0.17	13.75	0.099
		Cdl	1E-06	4.53E-04	4.43E-04	4.53E-04	4.36E-04	4.44E-04	4.50E-04	4.53E-04	0.74	0.000
		Rt	1	67.93	68.98	69.05	68.31	68.00	69	69.05	0.07	0.479
		Cr	1E-11	0.39	0.40	0.40	0.41	0.40	0.4	0.40	0.11	0.004
		R1	100	448	429	413	420	458	418	413	1.08	16.935
		L1	0.1	388	347	314	323	500	328	314	4.21	67.813
Tasa cruzamiento :	1	F.Optimizar	3.28E+24	2.84E+00	6.47E-03	6.18E-03	1.68E-01	9.05E-01		6.18E-03		
Tasa de mutación :	0	Rs	0	0.25	0.14	0.15	0.13	0.15	0.15	0.15	1.74	0.042
		Cdl	1E-06	4.58E-04	4.49E-04	4.50E-04	4.49E-04	4.50E-04	4.50E-04	4.50E-04	0.07	0.000
		Rt	1	69.5	69	69	68.8	68.5	69	69	0.03	0.313
		Cr	1E-11	0.40	0.40	0.40	0.40	0.40	0.4	0.40	0.02	0.001
		R1	100	404	419	418	429	440	418	418	0.02	12.146
		L1	0.1	250	329	324	344	377	328	324	1.14	41.709
Tasa cruzamiento :	0.9	F.Optimizar	3.28E+24	8.27E+00	7.66E+00	1.22E+01	1.12E+01	1.03E+01		7.66E+00		
Tasa de mutación :	0.1	Rs	0	0.15	0.17	0.15	0	0.28	0.15	0.17181	14.54	0.089
		Cdl	1E-06	4.45E-04	4.54E-04	4.54E-04	4.43E-04	4.51E-04	4.50E-04	0.00045	0.92	0.000
		Rt	1	68.08	68.07	67.53	67.42	67.34	69	68.067	1.35	0.321
		Cr	1E-11	0.39	0.40	0.39	0.40	0.41	0.4	0.39919	0.20	0.009
		R1	100	438	475	485	482	498	418	474.962	13.63	20.265
		L1	0.1	515	500	579	571	438	328	500.145	52.48	51.467
Tasa cruzamiento :	0.9	F.Optimizar	3.28E+24	3.07E+00	1.88E+00	4.71E+00	3.57E+00	2.27E+00		1.88E+00		
Tasa de mutación :	0.05	Rs	0	0.28	0.008	0.25	0.26	0.33	0.15	0.008	94.73	0.112
		Cdl	1E-06	4.49E-04	4.51E-04	4.55E-04	4.51E-04	4.53E-04	4.50E-04	4.51E-04	0.31	0.000
		Rt	1	69	69	70	68	68	69	69	0.33	0.606
		Cr	1E-11	0.41	0.40	0.41	0.41	0.40	0.4	0.40	0.25	0.006
		R1	100	406	457	385	470	427	418	457	9.31	31.194
		L1	0.1	340	347	243	376	373	328	347	5.74	48.316
Tasa cruzamiento :	0.9	F.Optimizar	3.28E+24	1.78E+02	6.75E-06	3.45E-01	3.02E-02	2.44E-02		6.75E-06		
Tasa de mutación :	0	Rs	0	0.11	0.15	0.11	0.16	0.16	0.15	0.15	0.20	0.024
		Cdl	1E-06	5.00E-04	4.50E-04	4.53E-04	4.49E-04	4.50E-04	4.50E-04	4.50E-04	0.00	0.000
		Rt	1	147	69	69	69	69	69	69	0.00	31.404
		Cr	1E-11	0.42	0.40	0.40	0.40	0.40	0.4	0.40	0.00	0.006
		R1	100	111	418	421	420	420	418	418	0.02	123.674

		L1	0.1	1.02	328	313	334	333	328	328	0.02	130.617
Tasa cruzamiento :	0.8	F.Optimizar	3.28E+24	7.95E+00	9.04E+00	9.31E+01	8.32E+00	2.71E+00		2.71E+00		
Tasa de mutación :	0.1	Rs	0	0.12	0.21	0.04	0.10	0.29	0.15	0.29	93.27	0.088
		Cdl	1E-06	4.42E-04	4.42E-04	4.38E-04	4.44E-04	4.53E-04	4.50E-04	4.53E-04	0.64	0.000
		Rt	1	67.7	67.6	68.0	67.8	68.1	69	68.1	1.35	0.171
		Cr	1E-11	0.39	0.41	0.50	0.41	0.40	0.4	0.40	0.25	0.039
		R1	100	475	492	497	455	434	418	434	3.87	23.514
		L1	0.1	528	504	517	5057	349	328	349	6.30	66.539
Tasa cruzamiento :	0.8	F.Optimizar	3.28E+24	4.33E+00	8.92E-01	6.89E+00	1.16E+01	6.43E+00		8.92E-01		
Tasa de mutación :	0.05	Rs	0	0.28	3.73E-06	0.14	0.29	0.14	0.15	3.73E-06	100.00	0.108
		Cdl	1E-06	4.48E-04	4.44E-04	4.47E-04	4.46E-04	4.47E-04	4.50E-04	4.44E-04	1.29	0.000
		Rt	1	68.	69	68	68	68	69	69	0.09	0.359
		Cr	1E-11	0.39	0.40	0.40	0.37	0.39	0.4	0.40	0.51	0.009
		R1	100	414	421	460	426	456	418	421	0.81	19.031
		L1	0.1	396	366	517	399	506	328	366	11.63	61.864
Tasa cruzamiento :	0.8	F.Optimizar	3.28E+24	1.16E-04	2.64E-02	1.31E-03	2.37E-04	3.88E+00		1.16E-04		
Tasa de mutación :	0	Rs	0	0.15	0.16	0.15	0.15	0.12	0.15	0.15	0.88	0.014
		Cdl	1E-06	4.50E-04	4.50E-04	4.50E-04	4.50E-04	4.38E-04	4.50E-04	4.50E-04	0.02	0.000
		Rt	1	69	69	69	69	68	69	69	0.00	0.337
		Cr	1E-11	0.40	0.40	0.40	0.40	0.40	0.4	0.40	0.00	0.000
		R1	100	418	419	418	418	446	418	418	0.04	10.961
		L1	0.1	328	332	327	328	397	328	328	0.14	27.415

		E min	E max
	Rs	0.20	100.00
(Cdl	0.00	1.29
	Rt	0.00	1.35
	Cr	0.00	0.88
	R1	0.02	13.63
	L1	0.02	52.48

Parámetros Genehur	nter		V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	1.82E+04	1.84E+02	7.47E+01	7.70E+01	1.20E+02	4.88E+01		4.88E+01		
Tasa de mutación :	0.1	Rs	0	3.0	3.2	3.2	3.0	2.4	3	2.4	21.18	0.326
		Cdl	1E-06	3.33E-04	3.46E-04	3.25E-04	3.42E-04	3.25E-04	3.40E-04	3.25E-04	4.30	0.000
		Rt	10	34	35	34	34	35	35	35	0.08	0.558
		R1	10	41	45	38	44	68	64	68	5.92	144.373
		L1	0.1	331	944	964	835	126	78	126	61.85	344.988
		R2	1	47	75	85	126	23	28	23	18.84	35.202
		L2	1	118	68	81	88	2252	2860	2252	21.26	865.384
Tasa cruzamiento :	1	F.Optimizar	1.82E+04	2.94E+01	2.71E+00	2.19E+01	1.86E+02	6.89E+01		2.71E+00		
Tasa de mutación :	0.05	Rs	0	2.8	3.1	3.0	2.9	3.3	3	3.1	3.76	0.185
		Cdl	1E-06	3.30E-04	3.39E-04	3.39E-04	3.39E-04	3.54E-04	3.40E-04	3.39E-04	0.43	0.000
		Rt	10	34	35	35	35	35	35	35	0.97	0.354
		R1	10	63	62	56	1675	41	64	62	2.54	647.676
		L1	0.1	125	79	78	382	987	78	79	1.58	347.128
		R2	1	23	26	34	45	77	28	26	5.95	19.409
		L2	1	3290	2738	5002	97	68	2860	2738	4.26	1912.454
Tasa cruzamiento :	1	F.Optimizar	1.82E+04	9.50E+00	2.26E-05	1.81E-03	7.10E-02	1.85E+02		2.26E-05		
Tasa de mutación :	0	Rs	0	2.8	3.0	3.0	2.9	3.0	3	3.0	0.01	0.080
		Cdl	1E-06	3.30E-04	3.40E-04	3.40E-04	3.38E-04	3.39E-04	3.40E-04	3.40E-04	0.00	0.000
		Rt	10	34	35	35	35	34	35	35	0.00	0.309
		R1	10	70	64.	64	64	908	64	64.	0.00	336.795
		L1	0.1	94	78	78	78	500	78	78	0.00	167.264
		R2	1	33	28	28	28	46	28	28	0.05	7.007
		L2	1	2500	2860	2862	2874	106	2860	2860	0.00	1076.603
Tasa cruzamiento :	0.9	F.Optimizar	1.82E+04	9.16E+01	9.85E+00	1.43E+01	1.43E+01	1.89E+02		9.85E+00		
Tasa de mutación :	0.1	Rs	0	2.37	2.73	2.85	2.86	3.03	3	2.73044	8.99	0.220
		Cdl	1E-06	3.03E-04	3.32E-04	3.52E-04	3.39E-04	3.47E-04	3.40E-04	0.00033	2.45	0.000
		Rt	10	33	35	36	35	35	35	35.4141	1.18	0.924
		R1	10	86	59	71	66	1923	64	59.4125	7.17	740.966
		L1	0.1	156	89	62	82	878	78	88.9767	14.07	313.835
		R2	1	19	24	32	42	44	28	23.6138	15.66	9.733

ESPECTRO 6. Fenómeno de electrodo con procesos adsortivos

		L2	1	3418	3624	2588	2379	94	2860	3624.46	26.73	1255.786
Tasa cruzamiento :	0.9	F.Optimizar	1.82E+04	3.13E+01	4.11E+00	6.82E+01	1.86E+02	3.78E+00		3.78E+00		
Tasa de mutación :	0.05	Rs	0	2.3	3.0	3.4	3.0	3.1	3	3.1	2.24	0.378
		Cdl	1E-06	3.20E-04	3.41E-04	3.49E-04	3.45E-04	3.32E-04	3.40E-04	3.32E-04	2.43	0.000
		Rt	10	34	35	35	34	35	35	35	0.45	0.303
		R1	10	70	68	37	605	68	64	68	5.55	218.069
		L1	0.1	126	75	999	515	82	78	82	4.87	359.218
		R2	1	28	27	75	49	29	28	29	5.14	18.362
		L2	1	3584	3133	71.80	113	2414	2860	2414	15.61	1493.295
Tasa cruzamiento :	0.9	F.Optimizar	1.82E+04	7.39E-04	1.87E-02	1.10E-01	1.93E+02	6.60E+01		7.39E-04		
Tasa de mutación :	0	Rs	0	3.01	2.99	2.93	3.30	3.23	3	3.00659	0.22	0.148
		Cdl	1E-06	3.40E-04	3.40E-04	3.38E-04	4.19E-04	3.44E-04	3.40E-04	0.00034	0.02	0.000
		Rt	10	35	35	35	2504	35	35	34.9922	0.02	987.492
		R1	10	64	64	64	34	39	64	63.9718	0.04	13.388
		L1	0.1	78	78	78	0.1	1000	78	78.0073	0.01	377.747
		R2	1	28	28	28	44	80	28	27.9504	0.18	20.165
		L2	1	2857	2892	2909	92	74	2860	2857.46	0.09	1373.518
Tasa cruzamiento :	0.8	F.Optimizar	1.82E+04	8.64E+01	4.26E+01	8.37E+01	1.87E+02	3.95E+00		3.95014		
Tasa de mutación :	0.1	Rs	0	3.23	2.54	3.89	3.05	2.91	3	2.9147	2.84	0.445
		Cdl	1E-06	3.39E-04	3.17E-04	3.59E-04	3.5E-04	3.36E-04	3.40E-04	0.00034	1.21	0.000
		Rt	10	35	35	35	35	35	35	34.828	0.49	0.172
		R1	10	52	57	41	1288	65.78922	64	65.7892	2.80	493.530
		L1	0.1	975	103	965	421	78.85386	78	78.8539	1.09	395.606
		R2	1	77	28	84	46	30	28	29.5711	5.61	23.633
		L2	1	98	5939	76	92	2391	2860	2391.12	16.39	2290.737
Tasa cruzamiento :	0.8	F.Optimizar	1.82E+04	4.92E+00	1.61E+00	7.71E+01	1.88E+02	2.43E+00		1.61E+00		
Tasa de mutación :	0.05	Rs	0	3.45	2.9	2.9	3.0	3.2	3	2.92563	2.48	0.210
		Cdl	1E-06	3.45E-04	3.46E-04	3.51E-04	3.44E-04	3.46E-04	3.40E-04	0.00035	1.86	0.000
		Rt	10	35	35	35	35	35	35	35.3528	1.01	0.244
		R1	10	62	65	42	2861	61	64	64.8405	1.31	1121.414
		L1	0.1	70	75	953	642	76	78	75.2797	3.49	367.736
		R2	1	29	28	86	44	24	28	28	1.52	23.100
		L2	1	2493	2697	85	92	2740	2860	2697.2	5.69	1254.377
Tasa cruzamiento :	0.8	F.Optimizar	1.82E+04	7.01E-02	3.35E-02	6.59E+01	3.76E-02	1.42E-03		1.42E-03		

Tasa de mutación :	0	Rs	0	2.93	2.99	3.26	3.05	2.99	3	2.99	0.31	0.117
		Cdl	1E-06	3.39E-04	3.41E-04	3.46E-04	3.41E-04	3.40E-04	3.40E-04	3.40E-04	0.06	0.000
		Rt	10	35	35	35	35	35	35	35	0.03	0.047
		R1	10	64	64	39	64	64	64	64	0.05	9.883
		L1	0.1	78	78.	1000	78	78	78	78	0.06	368.778
		R2	1	28	28	80	28	28	28	28	0.12	20.769
		L2	1	2871	2888	74	2840	2861	2860	2861	0.05	1116.664

	E min	E max
Rs =	0.01	21.18
Cdl =	0.00	4.30
Rt =	0.00	1.18
R1 =	0.00	7.17
L1 =	0.00	61.85
R2 =	0.05	18.84
L2 =	0.00	26.73

ESPECTRO 7. Fenómeno de electrodo con procesos adsortivos

Parámetros Genehu	nter		V. inicial	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Valor real	Mejor sln	%Error	Desv std
Tasa cruzamiento :	1	F.Optimizar	1.76E+04	1.72E+02	1.48E+03	1.48E+03	1.50E+03	4.11E+02		1.72E+02		
Tasa de mutación :	0.1	Rs	0	2.77	4.67	4.63	4.36	2.20	3	2.77498	7.50	1.036
		Cdl	1E-06	3.00E-04	1.00E-03	1.00E-03	1.00E-03	3.47E-04	3.40E-04	0.0003	11.62	0.000
		Rt	10	28	7342	9666	8088	31	50	27.5617	44.88	4152.212
		Cr	1E-11	0.0027	0.0096	0.0034	0.0082	0.0017	0.001	0.0027	170.10	0.003
		Rr	-1000	-907	-344	-9.4	-356	-353	-100	-907.027	807.03	288.722
		R1	10	96	149	155	106	123	64	95.7789	49.65	23.137
		L1	0.1	272	703	759	944	743	78	271.607	248.21	222.261
		R2	1	46	36	36	36	38	28	45.8905	63.89	3.875
Tasa cruzamiento :	1	F.Optimizar	1.76E+04	4.82E+01	1.58E+03	3.08E+02	5.98E+01	6.60E+01		4.82E+01		
Tasa de mutación :	0.05	Rs	0	2.6	4.7	2.4	2.4	2.3	3	2.6	12.37	0.922
		Cdl	1E-06	3.67E-04	1.00E-03	3.12E-04	3.21E-04	2.84E-04	3.40E-04	3.67E-04	8.05	0.000
		Rt	10	31	9262	35	28	26	50	31	38.32	3692.820
		Cr	1E-11	0.0023	0.0048	0.0013	0.0024	0.0024	0.001	0.0023	133.80	0.001

1]	Rr	-1000	-313	-399	-146	-503	-528	-100	-313	213.38	138.918
		R1	10	76	9377	113	82	82	64	76	18.47	3715.478
	-	L1	0.1	109	0.1	501	158	140	78	109	40.26	168.660
		R2	1	47	34	32	48	47	28	47	66.63	7.050
Tasa cruzamiento :	1	F.Optimizar	1.76E+04	1.15E+00	1.55E+03	2.09E+00	1.58E+03	7.73E+02		1.15E+00		
Tasa de mutación :	0	Rs	0	3.05	5.30	2.92	4.72	2.93	3	3.05	1.59	1.021
		Cdl	1E-06	3.44E-04	1.00E-03	3.36E-04	1.00E-03	3.27E-04	3.40E-04	3.44E-04	1.17	0.000
		Rt	10	26	125	29	9684	28	50	26	47.69	3852.808
		Cr	1E-11	0.0038	3.17E-05	0.0029	0.0095	0.0018	0.001	0.0038	278.56	0.003
		Rr	-1000	500	-91	-250	-4.61868	-991	-100	500	399.53	354.606
		R1	10	61	9997	68	9981	8639	64	61	4.36	4667.559
		L1	0.1	70	0.1	89	0.1	132	78	70	9.78	51.525
		R2	1	58	1000	48	34	37	28	58	108.41	382.408
Tasa cruzamiento :	0.9	F.Optimizar	1.76E+04	1.81E+02	1.48E+03	7.79E+02	1.48E+03	1.74E+02		1.74E+02		
Tasa de mutación :	0.1	Rs	0	2.7	4.7	2.6	4.6	2.2	3	2.2	26.66	1.062
		Cdl	1E-06	3.07E-04	1.00E-03	3.37E-04	1.00E-03	2.89E-04	3.40E-04	2.89E-04	14.94	0.000
		Rt	10	28	9875	35	7485	28	50	28	44.63	4304.258
		Cr	1E-11	0.002	0.007	0.001	0.007	0.002	0.001	0.002	120.94	0.002
		Rr	-1000	-803	-1.38	-226.978	-579.459	-748.063	-100	-748.063	648.06	309.519
		R1	10	95	146	4748	151	98	64	98	52.88	1850.512
		L1	0.1	287	675	20	700	285	78	285	265.61	259.179
		R2	1	44	36	32	36	45	28	45	60.69	4.902
Tasa cruzamiento :	0.9	F.Optimizar	1.76E+04	1.48E+03	2.55E+01	1.46E+02	5.71E+01	1.78E+01		1.78E+01		
Tasa de mutación :	0.05	Rs	0	4.6	2.9	2.5	2.8	2.7	3	2.7	9.79	0.783
		Cdl	1E-06	1.00E-03	3.33E-04	3.04E-04	3.2E-04	3.12E-04	3.40E-04	3.12E-04	8.36	0.000
		Rt	10	9741	27	30	29	26	50	26	48.28	3885.225
		Cr	1E-11	0.0056	0.0029	0.0020	0.0026	0.0037	0.001	0.0037	266.05	0.001
		Rr	-1000	-350	-623	-258	-525	-501	-100	-501	401.42	131.953
		R1	10	161	77	96	77	64	64	64	0.52	34.515
		L1	0.1	757	126	256	157	62	78	62	20.65	250.671
		R2	1	36	51	40	47	59	28	59	110.32	8.155
Tasa cruzamiento :	0.9	F.Optimizar	1.76E+04	1.48E+03	2.97E+02	7.73E+02	1.48E+03	2.35E+00		2.35E+00		
Tasa de mutación :	0	Rs	0	4.65	2.607238	3.00	4.65	2.89	3	2.88669	3.78	0.900
		Cdl	1E-06	1E-03	3.15E-04	3.30E-04	1E-03	3.26E-04	3.40E-04	0.00033	4.24	0.000

_	-											
		Rt	10	8431	29	28	9064	26	50	26.5239	46.95	4276.361
		Cr	1E-11	1.02E-05	1.69E-03	1.79E-03	8.42E-03	3.33E-03	0.001	0.00334	233.50	0.003
		Rr	-1000	-874.387	-308.985	-999.866	-0.20585	-533	-100	-532.86	432.86	365.523
		R1	10	150	152	7100	150	67	64	67.3817	5.28	2788.367
		L1	0.1	706	373	133	706	90	78	89.9587	15.33	266.589
		R2	1	36	40	37	36	54	28	54.06	93.07	6.899
Tasa cruzamiento :	0.8	F.Optimizar	1.76E+04	1.48E+03	1.58E+03	1.48E+03	1.52E+02	8.11E+02		1.52E+02		
Tasa de mutación :	0.1	Rs	0	4.7	4.8	4.7	2.1	3.4	3	2.1	29.00	1.030
		Cdl	1E-06	1E-03	1E-03	1E-03	3.05E-04	3.45E-04	3.40E-04	3.05E-04	10.26	0.000
		Rt	10	9950	9825	6328	33	29	50	33	34.75	4442.205
		Cr	1E-11	0.007	0.004	0.01	0.0018	0.002	0.001	0.0018	79.50	0.003
		Rr	-1000	-50	-22	-85	-249	-307	-100	-249	149.32	113.853
		R1	10	154	4265	152	97	4336	64	97	51.88	2041.072
		L1	0.1	752	0.205	685	253	0.1	78	253	224.77	324.855
		R2	1	36	34	36	40	34	28	40	44.22	2.389
Tasa cruzamiento :	0.8	F.Optimizar	1.76E+04	5.42E+01	4.47E+01	1.48E+03	1.58E+03	1.57E+02		4.47E+01		709.544
Tasa de mutación :	0.05	Rs	0	2.41	2.84	4.67	4.72	2.55	3	2.84	5.27	1.036
		Cdl	1E-06	3.15E-04	3.2E-04	1E-03	1E-03	3.28E-04	3.40E-04	3.2E-04	5.00	0.000
		Rt	10	30	26	8728	9302	29	50	26	46.85	4406.082
		Cr	1E-11	0.002	0.002	0.008	0.004	0.002	0.001	0.002	155.19	0.002
		Rr	-1000	-307	-523	-148	-650	-644	-100	-523	422.62	197.310
		R1	10	81	76	149	9340	95	64	76	18.64	3695.835
		L1	0.1	139	128	702	0.102	268	78	128	64.30	242.470
		R2	1	45	49	36	34	45	28	49	75.20	5.915
Tasa cruzamiento :	0.8	F.Optimizar	1.76E+04	1.58E+03	3.89E+02	4.16E+00	5.59E+00	4.75E+02		4.16E+00		
Tasa de mutación :	0	Rs	0	4.7	2.2	2.9	3.2	3.1	3	2.9	4.44	0.828
		Cdl	1E-06	1.00E-03	3.8E-04	3.3E-04	3.4E-04	4.4E-04	3.40E-04	3.3E-04	3.35	0.000
		Rt	10	9611	488	26	66	36	50	26	47.08	3786.704
		Cr	1E-11	0.01	1.47E-05	0.00324	0.00048	0.00125	0.001	0.00324	224.01	0.004
		Rr	-1000	-3.90	-532	-500	-102	-931	-100	-500	400.52	332.936
		R1	10	9718	107	69	68.	126	64	69	8.04	3850.237
		L1	0.1	0.11	533.87	94.32	89.26	445.89	78	94.32	20.93	214.467
		R2	1	34	22	53	23	41	28	53	89.90	11.704

	E min	E max
Rs =	1.59	29.00
Cdl =	1.17	14.94
Rt =	34.75	48.28
Cr =	79.50	278.56
Rr =	149.32	807.03
R1 =	0.52	52.88
L1 =	9.78	265.61
R2 =	44.22	110.32

***** A CONTINUACIÓN SE MUESTRA EL RESULTADO OBTENIDO AL REALIZAR UN AJUSTE DEL ESPECTRO 7, CON 8000 GENERACIONES: *****

			Valor			INTER	VALO
Parámetros Genehu	nter	Componente	Real	Resultado	%Error	Mínimo	máximo
Tasa cruzamiento :	0.8	Rs	3	2.4957	16.8	0	1000
Tasa de mutación :	0.1	Cdl	3.40E-04	3.33E-04	2.9	1E-06	1E-03
		Rt	50	28.80	42.4	10	10000
			0.001	2.50E-03	150	1E-11	1E-02
		Rr	-100	-537.5	437	-1000	0
		R1	64	78.30	22.4	10	10000
		L1	78	137.1	75.8	0.1	1000
		R2	28	48.59	73.5	1	1000

Elemento:

Unidades:

Ohm
Ω
Faradios
F
Henry
Н

ANEXO V. Resultados del ajuste de circuitos equivalentes teóricos ideales con 5% de error aleatorio mediante el Algoritmo Genético Genehunter

ESPECTRO 1. Representación de un electrodo idealmente polarizable

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			1.83E-02	1.83E-02	1.83E-02	1.83E-02	1.83E-02	0.018278817		
Rs	10	Ω	9.8778	9.877776	9.877652	9.87784195	9.877684	9.877841949	1.221581	1.221581
Cdl	1.00E-05	F	1.01E-05	1.01E-05	1.01E-05	1.0054E-05	1.01E-05	1.00535E-05	-0.53529	0.53529

E MAX 1.221581

E MIN 0.53529

ESPECTRO 2. Interfase electroquímica: transferencia de carga y proceso de difusión

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			1.89E-02	1.89E-02	1.89E-02	1.89E-02	1.89E-02	1.89E-02		
Rs	10	Ω	9.940895	9.948736	9.943024	9.94189548	9.948761	9.948736191	0.512638	0.512638
Rt	1000	Ω	985.5842	986.2745	986.2153	986.197815	986.2371	986.2745361	1.372546	1.372546
Cdl	2.00E-05	F	2E-05	2E-05	2E-05	2.0005E-05	2E-05	2.00279E-05	-0.13954	0.139541
σ	316		319.7153	319.4736	319.5137	319.486298	319.4588	319.4735718	-1.09923	1.099232

E MAX 1.372546

E MIN 0.139541

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			1.64E-02	1.73E-02	1.79E-02	1.66E-02	1.98E-02	1.64E-02		
Rs	10	Ω	10.08221	9.978483	10.13602	10.0233879	10.07363	10.08220673	-0.82207	0.822067
Rt	200	Ω	197.5951	196.2787	198.3952	198.057617	195.5746	197.5950775	1.202461	1.202461
Cdl	1.00E-05	F	9.85E-06	9.81E-06	9.85E-06	9.8275E-06	9.85E-06	9.84518E-06	1.548235	1.548235
Cr	0.001	F	0.001008	0.001005	0.001004	0.00100085	0.001016	0.001007624	-0.76243	0.762432
						-				
Rr	-500	Ω	-499.023	-498.75	-503.404	498.868805	-503.311	-499.0227661	0.195447	0.195447
									E MAX	1.548235

ESPECTRO 3. Representación de fenómeno de pasivación

E MIN 0.195447

ESPECTRO 4. Representación de fenómeno de electrodo bloqueante

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			1.87E-02	1.87E-02	1.87E-02	1.87E-02	1.87E-02	1.87E-02		
Rs	10	Ω	9.837259	9.836492	9.836938	9.8357172	9.836654	9.837259293	1.627407	1.627407
Cdl	1.00E-04	F	9.89E-05	9.91E-05	9.91E-05	9.9059E-05	9.91E-05	9.8948E-05	1.051968	1.051968
Rt	1500	Ω	1500.024	1499.794	1499.855	1500.08069	1499.83	1500.024414	-0.00163	0.001628
Cr	3.20E-03	F	0.003214	0.003213	0.003212	0.00321209	0.00321	0.003213745	-0.42952	0.429519

E MAX 1.627407 E MIN 0.001628

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			2.05E-02	2.05E-02	1.91E-02	1.95E-02	2.02E-02	1.91E-02		
Rs	0.15	Ω	0.150562	0.150504	0.150706	0.15040557	0.150838	0.150705919	-0.47061	0.470612
Cdl	4.50E-04	F	0.000449	0.000449	0.000448	0.00044955	0.000448	0.000448284	0.381404	0.381404
Rt	69	Ω	68.10084	68.1299	69.38081	69.5534363	68.7644	69.3808136	-0.5519	0.551904
Cr	0.4	F	0.389809	0.396063	0.394323	0.4043265	0.394727	0.394322634	1.419342	1.419342
R1	418	Ω	442.4298	444.2434	409.4108	397.260223	468.0546	409.4107666	2.054841	2.054841
L1	328	Н	511.6436	464.904	408.1963	399.049774	501.7296	408.1962585	-24.4501	24.45008
										04 45000

ESPECTRO 5. Representación de un electrodo con capa semiconductora

E MAX 24.45008

E MIN 0.381404

ESPECTRO 6. Representación de un electrodo con procesos adsortivos

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			3.38E-02	3.58E-02	1.60E-01	3.31E-02	7.51E-02	3.31E-02		
Rs	3	Ω	2.97354	2.988727	2.956954	2.99036741	2.96326	2.990367413	0.321086	0.321086
Cdl	3.40E-04	F	0.000339	0.000336	0.000335	0.00033561	0.000336	0.000335606	1.292279	1.292279
Rt	35	Ω	34.5151	34.36079	34.25008	34.7961731	34.26361	34.7961731	0.582363	0.582363
R1	64	Ω	65.78613	64.8456	35.25633	65.5749512	54.20478	65.57495117	-2.46086	2.460861
L1	78	Н	79.98949	94.04814	997.9938	78.3901291	98.02562	78.39012909	-0.50017	0.500165
R2	28	Ω	28.93187	31.47998	94.65883	30.5001202	34.16956	30.50012016	-8.929	8.929001
L2	2860	Н	2750.718	2813.074	85.22078	2767.46802	5013.188	2767.468018	3.235384	3.235384

E MAX 8.929001

E MIN 0.321086

Parámetros	Valor	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	Mejor solución	%Error	%Error
a evaluar	real									Absoluto
F. optimizar			4.35E-01	4.35E-01	6.92E-02	6.32E-02	9.17E-02	6.32E-02		
Rs	3	Ω	2.962827	2.976539	2.932147	2.96440768	2.94239	2.964407682	1.186411	1.186411
Cdl	3.40E-04	F	0.000338	0.000335	0.000345	0.00033531	0.000331	0.000335311	1.379188	1.379188
Rt	50	Ω	38.17807	40.8213	29.86257	30.4706497	32.05558	30.47064972	39.0587	39.0587
Cr	0.001	F	0.001405	0.001232	0.002448	0.00244918	0.002157	0.002449179	-144.918	144.9179
Rr	-100	Ω	-250.832	-205.754	-536.198	-508.185791	-265.853	-508.185791	-408.186	408.1858
R1	64	Ω	7456.927	8295.837	90.9268	85.2555847	88.04541	85.25558472	-33.2119	33.21185
L1	78	Н	126.5021	100.7394	174.9974	174.205933	252.5416	174.2059326	-123.341	123.3409
R2	28	Ω	31.35835	30.07755	44.88426	45.5145111	39.33286	45.51451111	-62.5518	62.55183
									F MAX	408 1858

ESPECTRO 7. Representación de un electrodo con procesos adsortivos

E MAX 408.1858 E MIN 1.186411

Notas: F. Optimizar se refiere a la función objeto de ajuste: χ^2 Las corridas reportan la mejor solución al cabo del término de las generaciones determinadas para cada caso

ANEXO VI. Resultados del ajuste de espectros experimentales del sistema Ferri/Ferrocianuro y Níquel, mediante el Algoritmo de Levenberg-Marquardt y Algoritmo Genético Genehunter

Experimento 1. Sistema Ferri/Ferrocianuro, técnica de disco rotatorio

Parámetros	Resultado		Re	sultados Algo	oritmo Genét	ico		Mejor
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución
F. optimizar	9.75E-02		2.00E-01	2.60E-01	2.35E-01	2.74E-01	4.35E-01	2.00E-01
Rs	14.94	Ω	6.33	3.83	3.09	0.84	0	6.33
Rt	132	Ω	161	165.	166	173	198	161
Yo	1.71E-03		1.82E-03	1.81E-03	1.81E-03	1.84E-03	1.87E-03	1.82E-03
n	0.86		0.69	0.646	0.66	0.63	0.55	0.69
Yq	3.9634E-06		1.87E-05	2.78E-05	2.37E-05	3.07E-05	6.84E-05	1.87E-05
В	1.2122		1.26	1.22	1.25	1.25	1.24	1.26

Espectro obtenido a 200 rpm, 0 V

Espectro obtenido a 400 rpm, - 80 mV

Parámetros	Resultado		Resultados Algoritmo Genético							
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución		
F. optimizar	1.07E-02		2.59E-01	4.43E-01	3.79E-01	3.50E-01	6.38E-02	6.38E-02		
Rs	14.60	Ω	3.83	0.135	2.14	2.42	11.65	11.65		
Rt	382	Ω	467	461	481	476	422	422		
Yo	6.55E-04		7.21E-04	7.21E-04	7.05E-04	7.43E-04	7.01E-04	7.01E-04		
n	0.92		0.77	0.72	0.73	0.74	0.86	0.86		
Yq	1.75E-06		7.01E-06	1.06E-05	9.78E-06	9.12E-06	3.14E-06	3.14E-06		
В	0.92		0.96	0.96	0.95	0.98	0.97	0.97		

Resultados del ajuste de espectros experimentales del sistema Níquel, mediante el Algoritmo de Levenberg-Marquardt y Algoritmo Genético Genehunter

Experimento 2. Disolución de Níquel en H₂SO₄ 0.5 M

Espectro obtenido a 0 mV

Parámetros	Resultado		Resultados Algoritmo Genético							
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución		
F. optimizar	6.65E-02		6.65E-02	7.31E-02	6.66E-02	6.65E-02	6.65E-02	6.65E-02		
Rs	5.77	Ω	5.77	5.54	5.75	5.77	5.76	5.76		
Rt	26298	Ω	26312	26415	26329	26311	26308	26308		
Yq	5.02E-06		5.02E-06	5.21E-06	5.04E-06	5.02E-06	5.03E-06	5.03E-06		
n	9.25E-01		0.92	0.92	0.92	0.92	0.92	0.92		
Yw	1.75E-03		1.81E-03	1.63E-03	1.81E-03	1.80E-03	1.79E-03	1.79E-03		

Espectro obtenido a 30 mV

Parámetros	Resultado		Re	sultados Algo	oritmo Genét	ico		Mejor
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución
F. optimizar	4.04E-02		4.04E-02	4.05E-02	4.05E-02	4.04E-02	4.02E-02	4.020E-02
Rs	5.85	Ω	5.85	5.84	5.83	5.80	5.80	5.847
Rt	8946.7	Ω	8949	8970	8950	8945	8964	8964
R1	2.80E+04	Ω	28283	29658	28804	27947	29200	29200
Yq	5.64E-06		5.63E-06	5.65E-06	5.65E-06	5.64E-06	5.66E-06	5.660E-06
n	9.24E-01		0.92	0.92	0.92	0.92	0.92	0.92
L	380360	Н	378102	364900	379488	382156	360927	360927

Continuación. Resultados del ajuste de espectros experimentales del sistema Níquel

Espectro obtenido a 45 mV

Parámetros	Resultado		Re	sultados Alg	oritmo Genét	ico		Mejor
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución
F. optimizar	4.98E-02		5.19E-02	4.99E-02	5.70E-02	5.37E-02	5.05E-02	4.985E-02
Rs	5.8	Ω	5.9	5.78	5.61	5.63	5.86	5.78
Rt	1768	Ω	1746	1766	1811	1796	1762	1766
R1	7.17E+03	Ω	2342	2315	2296	2455	2354	2315
R2	2.34E+03	Ω	7582	7181	6622	6751	7589	7181
Yq	7.44E-06		7.26E-06	7.47E-06	8.04E-06	7.85E-06	7.37E-06	7.47E-06
n	9.16E-01		0.92	0.92	0.91	0.91	0.92	0.92
L1	2004.8	Н	26606	26454	26330	26299	25488	26454
L2	26507	Н	2574	2019	1447	1666	2061	2019

Espectro obtenido a 90 mV

Parámetros	Resultado		Re	sultados Algo	oritmo Genét	ico		Mejor
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución
F. optimizar	2.08E+06		4.28E-02	4.76E-02	3.56E-02	4.33E-02	4.12E-02	3.56E-02
Rs	5.76	Ω	5.13	5.38	5.47	5.49	5.20	5.47
Rt	1.15E+06	Ω	7397	8775	6023	97	2445	6023
Rr	466	Ω	586	2748.18	568	5558	634	568
С	0.12	F	0.14	0.54	0.12	0.14	0.14	0.12
Yo	2.00E-05		2.83E-05	2.05E-05	2.32E-05	1.92E-05	2.61E-05	2.32E-05
no	0.84		0.83	0.87	0.86	0.87	0.84	0.86
L	5.86E+16	Н	0.54	0.99	0.19	0.91	0.47	0.19
Yq	3.50E-16		0.048	0.098	0.066	0.0098	0.044	0.066
nq	-1		0.737	0.998	0.324	0.117	0.109	0.324
R1	4.96E+14	Ω	3574	597	4896	962	7071	4896

Continuación. Resultados del ajuste de espectros experimentales del sistema Níquel

Espectro obtenido a 120 mV

Parámetros	Resultado		Re	sultados Algo	oritmo Genét	ico		Mejor
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución
F. optimizar	3.35E-03		4.26E-03	5.32E-03	6.72E-03	1.35E-02	9.81E-03	4.26E-03
Rs	5.6	Ω	5.51	5.62	5.53	5.48	5.57	5.51
Rt	458	Ω	456	450	459	475	477	456
Rr	2.14E+03	Ω	2369	2473	2319	1891	1751	2369
Yw	3.20E-02		0.031	0.029	0.032	0.038	0.038	0.031
Yo	2.22E-05		2.3E-05	2.29E-05	2.42E-05	2.46E-05	2.33E-05	2.3E-05
no	8.70E-01		0.86	0.87	0.86	0.86	0.86	0.86
Yq	5.77E-05		5.07E-05	4.27E-05	5.53E-05	1.15E-04	1.35E-04	5.07E-05
nq	0.93035		0.98	0.97	0.94	0.74	0.68	0.98

Espectro obtenido a 150 mV

Parámetros	Resultado		Re	sultados Algo	oritmo Genét	ico		Mejor
a evaluar	Levenb-Marq	Unidades	Corrida 1	Corrida 2	Corrida 3	Corrida 4	Corrida 5	solución
F. optimizar	5.22E-01		1.29E-01	1.19E-01	1.65E-01	1.15E-01	2.05E-01	1.15E-01
Rs	5.8496	Ω	4.81	4.93	5.28	4.99	4.92	4.99
Rt	1098	Ω	1001	907	1536	1006	889	1006
R1	4.51E+02	Ω	638	634	431	611	698	611
С	6.31E-03	F	6.05E-03	5.93E-03	7.5E-03	6.07E-03	5.88E-03	6.07E-03
Yo	2.10E-05		3.35E-05	3.64E-05	3.77E-05	3.91E-05	4.38E-05	3.91E-05
no	8.60E-01		0.82	0.82	0.81	0.81	0.80	0.81
Yq	5.38E-04		4.23E-04	3.11E-04	9.40E-04	3.96E-04	3.69E-04	3.96E-04
nq	0.7		0.88	0.93	0.58	0.89	0.85	0.89

Respecto a la tabla XII:

Notas:

- 1. En todos los casos se reporta la mejor disolución de cada ajuste por corrida
- 2. F. Optimizar, se refiere a la función optimizada, en este caso χ^2