

CENTRO DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO

EN ELECTROQUIMICA

"ESTUDIO DE LA REDUCCIÓN DE CO₂ VÍA ESTADOS SUPERFICIALES Ti³⁺ PRESENTES EN ELECTRODOS NANOESTRUCTURADOS DE TiO₂ PREPARADOS MEDIANTE DEPÓSITO ELECTROFORÉTICO SOBRE SUSTRATOS DE ACERO INOXIDABLE"

TESIS PRESENTADA POR:

L.Q. Jesús Israel Valdez Nava

PARA OBTENER EL GRADO DE:

MAESTRÍA EN ELECTROQUÍMICA

ENERO, 2020

Centro de Investigación y Desarrollo Tecnológico en Electroquímica

REALIZADO POR:

L.Q. Jesús Israel Valdez Nava

DIRIGIDA POR

Dr. Juan Manríquez Rocha

SINODALES

Dr. Luis Arturo Godínez Mora-Tovar Presidente

Dr. Germán Orozco Gamboa Secretario

Dra. Selene Sepúlveda Guzmán Vocal

Dr. Gabriel Trejo Córdova Suplente Firma

Firma

Firma

Firma

Entre otros gases de efecto invernadero, las emisiones de CO₂ a la atmósfera han promovido un grave problema ambiental llamado calentamiento global. En consecuencia, los proyectos de investigación enfocados a mitigar los niveles de acumulación atmosférica de CO₂ han aumentado dramáticamente en la última década. De esta manera, los procesos electroquímicos de conversión de CO₂ representan rutas muy prometedoras para contribuir a la batalla contra el calentamiento global. Los métodos de reducción electroquímica de CO₂ (RE-CO₂) para generar moléculas orgánicas de bajo peso molecular (por ejemplo, ácido fórmico, metanol y etanol) que emplean medios acuosos y no acuosos presentan ciertas dificultades como: aplicación de altos potenciales excesivos, baja selectividad del principal producto de reacción, competencia cinética con electrogeneración H₂ y muy baja solubilidad en CO₂ en la mayoría de los disolventes. En este proyecto, películas nanoporosas que contienen un óxido semiconductor nanoparticulado (TiO₂ P25 Degussa, que tiene propiedades fotocatalíticas) y un nanomaterial de carbono amorfo (carbono vulcan XC-72R Cabot, que tiene propiedades electrocatalíticas) se depositaron electroforéticamente sobre sustratos de acero inoxidable AISI 304 (lámina, calibre #22 y malla, tamiz #80). Posteriormente, las superficies fotocatalíticas preparadas se emplearon para estudiar y comprender el efecto de los sitios Ti³⁺ (ubicados en la superficie del TiO₂ nanoparticulado) en el mecanismo de reacción de la conversión fotocatalítica de CO2 acuoso en etanol.

ABSTRACT

Among other greenhouse gases, CO₂ emissions at the atmosphere have promoted a serious environmental problem called global warming. Consequently, research projects focused to mitigate CO₂ atmospheric accumulation levels have dramatically raised in the last decade. In this way, the electrochemical processes of CO₂ conversion represent highly promising routes to contribute to the battle against global warming. CO₂ electrochemical reduction (CO₂-ER) methods to generate low molecular weight organic molecules (e.g. formic acid, methanol and ethanol) employing aqueous and non-aqueous media exhibit certain difficulties as like as: application of high over-potentials, low selectivity of the main reaction product, kinetic competition with H₂ electrogeneration, and very low CO₂ solubility in most of the solvents. In this project nanoporous films containing a nanoparticulate semiconductor oxide (i.e. TiO₂ P25 Degussa, having photocatalytic properties) and an amorphous carbon nanomaterial (i.e. vulcan carbon XC-72R Cabot, having electrocatalytic properties) were electrophoretically deposited on stainless steel AISI 304 substrates (foil, caliber #22 and mesh, sieve #80). Thereafter, the as-prepared photocatalytic surfaces were employed to gain understanding about the effect of Ti³⁺ sites (located on the nanoparticulate TiO₂ surface) on the reaction mechanism of the photocatalytic conversion of aqueous CO₂ into ethanol.

Este trabajo fue realizado en el Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), bajo la dirección

Dr. Juan Manríquez Rocha

AGRADECIMIENTOS

Gracias a mis padres: Rubén y Tere, a mis hermanos: Sara, Hannia e Iván y a todos mis familiares, tíos y primos por todo su apoyo.

A mis compañeros que me acompañaron en el desarrollo de mi maestría: Pedro, Gaby, Lupita, Itzia, Diana, Daniel, Armando, Vero, Ingrid, David, Arturo, Memo, Shamara, Denys, Mayra, Itzel y compañía, ojalá pudiera mencionarlos a todos. Espero verlos triunfar.

Gracias a los apoyos de CONACYT y al CIDETEQ por darme la oportunidad de realizar mi maestría.

Gracias a mis Profesores en la maestría por sus conocimientos y a los Doctores, Orozco y Godínez que se desempeñan como mis sinodales. A la Dra. Selene por recibirme en Monterrey durante mi estancia y por su equipo para realizar las pruebas correspondientes. A la Dra. Yolanda y el Dr. Bacame y todo su laboratorio por los resultados obtenidos en las pruebas de HPLC. Al Maestro Jesús por apoyarme en la obtención del material y utilizar su equipo para las pruebas de DQO.

Un especial agradecimiento a mi profesor el Dr. Juan Manríquez y a su esposa la Dra. Erika por todo el apoyo otorgado en esta maestría. Al Dr. Juan por recibirme en su laboratorio y apoyarme en mi trabajo.

Índice

Índice	1
ResumeniError! Marcador no de	finido.
1.Introducción	1
1.1 El efecto invernadero	1
1.2 Métodos de Captura de CO ₂	3
1.2.1 Almacenamiento del CO ₂	4
1.2.2 Costos de la captura y almacenamiento del CO2	5
1.2.3 Captura de CO ₂ a partir de algas marinas	5
1.3 Utilización del CO ₂	6
1.4 Electro Reducción de CO ₂ (ER-CO ₂)	8
1.4.1 Reducción electroquímica de CO ₂ sobre electrodos metálicos	10
1.4.2 ER-CO ₂ sobre semiconductores	13
1.5 Reducción Foto electroquímica de CO ₂	15
1.6 Reducción electroquímica de CO2 sobre electrodos de materiales carbor	10505 18
2. Metodología	22
3. RESULTADOS	26
3.1 CARACTERIZACION DEL MATERIAL	
3.1.1 Calculo de factor de rugosidad (R _f)	26
3.1.2 Caracterización por medio de Microscopia de Barrido Electrónico (S	EM) 27
3.1.3 Caracterización por medio de Espectroscopia Raman de electrodos y ss-304/TiO ₂ /C	ss-304/TiO ₂ 31
3.1.4 Caracterización por medio de Espectroscopia de fotoelectrones emit	tidos por
rayos X (XPS) de electrodos ss-304/TiO ₂ y ss-304/TiO ₂ /C	34
3.1.5 Caracterización del material a partir de Espectroscopia Uv-Visible(Uv Espectroscopia Infrarrojo con transformada de Fourier (FTIR)	/-Vis) y 41
3.1.6 Caracterización por medio de Voltamperometría lineal	46

3.1.7 Análisis de Curvas de Tafel y de Espectroscopia de Impedancia Electroquímic (EIS) en el E _{corr.}	ca
3.2 Estudio y aplicación de los electrodos ss-304/TiO ₂ y ss-304/TiO ₂ -C en la ER-CO ₂ 	
3.2.1 Respuesta potenciométrica de electrodos ss-304/TiO ₂ y ss-304/TiO ₂ -C en presencia de CO ₂ acuoso	
3.2.2 Análisis Cromatógrafo de líquidos de alta eficiencia del producto de la ER-CC Foto-catalítica)2
3.2.3 Estudio de la Captura y reducción foto-catalítica de CO₂ por electrodos ss- 304/TiO₂	
3.2.4 Estudio de la Captura del ion HCO ₃ ⁻ por electrodos ss-304/TiO ₂ y ss-304/TiO ₂ / 63	С
3.3 Estudio de la Generación Electroquímica de Hidrógeno (HER) en la ER-CO ₂ con lo electrodos ss-304/TiO ₂ y ss-304/TiO ₂ /C67	os
3.3.1 Caracterización voltamperométrica de electrodos ss-304/TiO₂ y ss-304/TiO₂/C	
3.3.2 Respuesta Espectro-Electroquímica de electrodo ss-304/TiO ₂ y ss-304/TiO ₂ /O	;
3.3.3 Respuesta Electro-catalítica del electrodo ss-304/TiO ₂ y ss-304/TiO ₂ /C y Calculo de rendimiento Cuántico	
3.3.4 Calculo de Rendimiento cuántico externo(Φ_E) e interno (Φ_I)73	
Conclusiones74	
Anexos	
Bibliografía 85	

1. Introducción

1.1 El efecto invernadero

La concentración natural de CO₂ en la atmósfera terrestre es alrededor de 250 ppm, lo que permite el crecimiento de las plantas que generan nuestro oxígeno. El CO₂ se produce naturalmente en nuestro planeta a partir de erupciones volcánicas, incendios forestales y la respiración de las plantas y animales. Al ciclo que controla el nivel de CO₂ en la atmósfera, y por lo tanto la temperatura superficial del planeta, se la llama Ciclo del Carbono. En este ciclo, el CO₂ es continuamente reciclado naturalmente a través de reservorios (biosfera, océanos, combustibles fósiles).

Fig 1.1 Ciclo del carbono. Imagen tomada de [].

La molécula de CO₂ tiene tres modos de vibración: dos de estiramiento (simétrico y anti simétrico) y uno de flexión. Tanto como el estiramiento asimétrico (2349 cm⁻¹) y el de Flexión (667 cm⁻¹) implican un cambio en el momento dipolar molecular y son activos en el infrarrojo. Las vibraciones activas en el infrarrojo del CO₂ se comportan como Gases de Efecto Invernadero (GEI). La atmósfera de la Tierra es transparente a la luz solar visible, la cual irradia la superficie de la Tierra y se reemite como radiación infrarroja hacia el espacio atravesando la atmósfera. Sin embargo, el exceso de CO₂ y otros GEI absorben buena parte de esta luz infrarroja, atrapándola dentro del planeta y causando un efecto llamado invernadero que aumenta la temperatura de la tierra calentándola.

En 1895, el químico sueco Svante Arrhenius presento un trabajo donde describía un modelo energético que considera los efectos del CO₂ y el vapor de agua en la

temperatura superficial de la tierra, y las variaciones en la concentración del CO₂ atmosférico [3]. Arrhenius mostró diferentes cálculos de temperatura cuando aumentaba o disminuía la cantidad de CO₂ en la atmosfera terrestre. Sus cálculos muestran que cuando la temperatura en las regiones árticas aumentaba entre 8 y 9°C la cantidad de CO₂ aumentaba 2.5 a 3 veces. Mientras que, si la cantidad de CO₂ disminuía, la temperatura disminuía [4]

Los GEI son producidos principalmente por la quema de combustibles fósiles, deforestación de bosques, incendios forestales y quema de basura. En 1900 la quema de combustibles produjo cerca de 2 000 millones de toneladas de CO₂ y para 1950 las emisiones industriales eran tres veces mayores. En 1965 el nivel de CO₂ atmosférico era de 320 ppm y en la actualidad son de 408 ppm. Además, este nivel va aumentando en 2 ppm por año [5]. Por lo tanto, se espera que para 2050 las emisiones de CO₂ aumenten 130% según la Agencia Internacional de Energía [3].

Fig 1.1 Emisión de CO₂ por año según el Observatorio de MAUNA LOA, Hawái. La línea roja indica los valores medios mensuales, la línea de color negro representa la misma, previa corrección del ciclo estacional promedio. Imagen tomada y modificada de [3]

Los puntos de aumento del CO₂ en la atmósfera presentan un problema grave ya que aumentan el efecto invernadero provocando un incremento en la temperatura terrestre y cambios climáticos graves. Como respuesta para mitigar el efecto en el cambio climático, se están desarrollando tecnologías viables para reducir las emisiones de CO₂ a la atmósfera. El uso de biocombustibles, celdas fotovoltaicas, y tecnologías para almacenamiento/conversión de CO₂, entre otras.

1.2 Métodos de Captura de CO2

Para comprometerse con el cuidado del medio ambiente y mitigar el cambio climático global, los países han establecido acuerdos (como Protocolo de Kioto) y han llevado a cabo numerosas investigaciones invirtiendo importantes sumas de dinero con el objetivo de implementar tecnologías que puedan reducir las emisiones de CO₂ en los procesos de generación de energía [6].

En la actualidad existen tres tipos básicos de captura de CO₂: en precombustión, en postcombustión (o secuestro de CO₂) y en oxicombustion.

El proceso de captura de CO₂ vía precombustión implica hacer reaccionar un combustible con oxígeno o aire y vapor para dar principalmente un "gas de síntesis (SYNGAS)" o "gas de combustible" compuesto principalmente de monóxido de carbono CO e hidrogeno H₂. El CO reacciona con el vapor en un reactor catalítico para dar CO₂ e H₂. Después, el CO₂ es separado usualmente por procesos físicoquímicos de adsorción. El gas resultante y rico en H₂ se puede utilizar en muchas aplicaciones como calderas, hornos, turbinas, motores y celdas de combustible [7].

La captura de CO₂ por postcombustión involucra todas aquellas tecnologías que tratan directamente los gases de combustión con el objeto de separar el CO₂ del resto de los componentes de dicha corriente. Este grupo de tecnologías abarcan desde procesos de adsorción, hasta membranas y criogenia [8]. Este proceso destaca debido a que es el que cuenta con un desarrollo más avanzado en comparación con el resto de las tecnologías.

En la oxicombustión de CO₂, el combustible es quemado con O₂ puro (> 95 %) mezclado con gas de combustión. Por lo que los gases de escape están compuestos principalmente de H₂O y CO₂, que puede separarse fácilmente del vapor de agua mediante condensación.

En la Figura 1.3 se muestran los diagramas de los sistemas de postcombustión, precombustión y oxicombustión.

Fig 1.3 Diagramas de bloques ilustrando los sistemas de los procesos de postcombustión, precombustión y oxicombustión. Imagen tomada de [9].

1.2.1 Almacenamiento del CO₂

Luego de que el CO₂ es capturado debe contenerse, para ello es inyectado en un almacenamiento geológico que favorece su acumulación de forma segura en el tiempo. Las formaciones geológicas idóneas para el almacenamiento de CO₂ son las sedimentarias, destacando aquellas que han retenido petróleo, gas natural, agua salada y capas de carbón. El gas inyectado en los poros de la formación almacén migrará a través de la roca, empujando y expulsando el fluido original contenido en los mismos, por lo que debe ser inyectado a una presión mayor de la existente en la formación para que pueda desplazarlo[6].

Otras técnicas menos comunes de almacenamiento de CO2 son:

- a) Almacenamiento biológico o natural: Hace referencia al proceso biológico en el que los ecosistemas marinos y terrestres son capaces de absorber CO₂ de la atmósfera. De esta forma no es necesario disponer de ningún equipo que captura, ni ningún medio de transporte que aísle y desplace al CO₂ hasta un posible sumidero.
- b) Almacenamiento en océanos: Este método consiste en inyectar el CO₂ captado directamente en los fondos oceánicos (a más de mil metros de profundidad), en

que la mayor parte quedaría aislada de la atmósfera durante siglos. Ello puede lograrse mediante el transporte de CO₂ por gasoductos o buques a un lugar de almacenamiento oceánico, donde se inyecta en la columna de agua del océano o en los fondos marinos [6].

1.2.2 Costos de la captura y almacenamiento del CO2

La implementación de una planta de captura y almacenamiento de CO₂ incrementa los costos de producción en un 35 a 40% y hasta 50% para las plantas que trabajan con materiales derivados de carbón.

En cuanto a los costos por almacenamiento de CO₂, estos varían entre 1 a 8 euros por tonelada de CO₂. Estos costos dependen principalmente de la profundidad y permeabilidad de almacenamiento geológico.

Estos procesos de captura de CO₂ aún se pueden considerar costosos en cuanto al beneficio que se obtiene. Las tecnologías aquí aplicadas aún son nuevas y deben investigarse más a fondo para tratar de reducir sus costos y que sean viables para todas las fábricas que producen este gas. De esta manera se reducirá la emisión de CO₂ en la atmosfera para evitar el efecto invernadero.

1.2.3 Captura de CO₂ a partir de algas marinas

Otra vía biológica para la reducción de CO₂ es la llevada a cabo por mecanismo acuáticos, especialmente microorganismos. En este caso por microorganismos fotosintéticos, como algas y micro algas que fijan el CO₂ en forma de biomasa.

Actualmente existe un renovado interés en la investigación con micro algas para reducir las emisiones de CO₂ en la atmosfera, ya que las microalgas tienen el potencial de fijar grandes cantidades de CO₂. El proceso de fijación de CO₂ por parte de estos microorganismos es la fotosíntesis, en donde, el agua se descompone en oxígeno y un agente reductor necesario para la reducción de CO₂ a carbono orgánico. Para fijar una molécula de CO₂ se necesitan 2 moléculas de NADPH, tres de ATP y una energía de 5.2x10⁴ joule que se consiguen mediante la absorción de ocho fotones de luz. Esta reacción se puede expresarse como:

$CO_2 + 4H^+ + 4e^- \xrightarrow{2NADPH,3ATP} (CH_2O) + H_2O$

En ausencia de luz, no se produce fotosíntesis y las células obtienen energía de compuestos orgánicos de reserva almacenados en su estructura celular que, al ser oxidados, liberan CO₂, vapor de agua y ATP.

Con dicho enfoque en las posibilidades que las microalgas pueden ofrecer, varios métodos industriales han sido desarrollados para su producción, por ejemplo, los Bioreactores verticales de algas. Sin embargo, la mayoría no son económicamente viables, especialmente a gran escala. Algunas de sus limitaciones incluyen: productividad baja, instalaciones costosas y alta demanda de agua.

Fig 1.4 Diagrama de un Bioreactor Vertical de Algas. Tomada de [9]

1.3 Utilización del CO₂

El CO₂ puede ser utilizado como un insumo en diferentes procesos industriales y productivos. Por ejemplo: para la recuperación de hidrocarburos, mediante la inyección de CO₂ en yacimientos de petróleos y gas. Otro uso consiste en utilizarlo como alimento de algas verde azules, cuyo metabolismo produce materia combustible [10]. En la

industria alimentaria se utiliza en bebidas carbonatadas para darles efervescencia, mientras que en la agricultura se utiliza como abono. También en usos médicos como agente de insuflación en cirugías, como agente para ventilación mecánica en cirugías, tratamientos estéticos y de problemas circulatorios.

El CO₂ también se puede aprovechar como precursor químico en la síntesis de hidrocarburos, por ejemplo:

a) Fijación de toda la molécula en productos orgánicos: síntesis de las especies en las que el radical -COO- está presente: RCOOH, RCOOR', ROC(O)OR', RHCOOR', policarbonatos, poliuretanos, entre otros. La urea, H₂NCONH₂, y sus derivados también están incluidos en esta lista.

 b) Fijación en carbonatos inorgánicos: síntesis de carbonatos de metales del Grupo 1 y 2 como Na₂CO₃, K₂CO₃, BaCO₃.

c) Reducción a moléculas orgánicas de tipo C1 como: CO, CH₄, CH₃OH, HCOOH, entre otros.

En la Figura 1.5 se esquematizan algunas de las rutas de productos químicos más complejos que pueden sintetizarse a partir del CO₂: urea (1), ácido salicílico (2), carbonatos cíclicos (3), policarbonatos (4), uretanos (5), inserción en enlaces Sn-C para formar derivados alílicos carboxilados (6), ácido acético (7), carbonatos (8) poli-pirroles (9), lactonas (10), poliuretanos (11), ácido propanoico (12), el acoplamiento reductivo de CO₂ con estireno (13) catalizados por benzonitrilo, bromoarenos carboxilados para formar los alquenos correspondientes (14), butadieno (15), etileno (16), estireno (17) [11].

Figura 1.5 Transformaciones químicas del CO2 [11]

1.4 Electro Reducción de CO₂ (ER-CO₂)

Se puede reducir CO₂ usando métodos termoquímicos, fotoquímicos y electroquímicos. En el caso de los métodos termoquímicos, no solo se requieren de altas temperaturas y presiones, sino también de una cantidad equivalente de hidrógeno como un agente reductor, mismo que es energéticamente problemático. El método fotoquímico ha sido menos reportado para la reducción de CO₂, y consiste en mimetizar un proceso de fotosíntesis para la producción de materia orgánica. Los métodos electroquímicos para la reducción de CO₂ (ER-CO₂) se han vuelto más atractivos debido a ciertas ventajas, por ejemplo: la reacción puede ser llevada a cabo a temperatura ambiente con una velocidad de reacción fácil de controlar por vías externas (sobrepotencial). Los productos pueden ser producidos en diferentes electrodos, posibilitando una separación natural usando cámaras de reacción individuales, lo que provoca una disminución en el costo asociado con post-reacciones de separación [12]. La ER-CO₂ también se puede personalizar para generar un producto deseado mediante la selección del electro catalizador, electrolito y potenciales aplicados.

Sin embargo, esta técnica también tiene sus desventajas; la mayor de ellas es que la molécula de CO₂ es de las más estables del planeta, es decir, el enlace C=O es difícil de

romper lo que ocasiona que la eficiencia de las celdas en la reducción de CO₂ es muy poca. La situación empeora cuando se quiere trabajar CO₂ en disolución acuosa debido a la poca solubilidad de la molécula y a la alta interferencia de la generación electroquímica del hidrógeno (HER), que ocurre en un potencial similar al de la ER-CO₂ (Figura 1.6). Por lo tanto la electrocatálisis del CO₂ puede producir productos indeseables y hay que tenerlo en cuenta todo el tiempo [13].

Reacción	E(V) vs ENH
$2H^++2e^- \rightarrow H_2$	-0.41
$CO_2+2H^++2e^- \rightarrow HCOOH$	-0.61
$CO_2+2H^++2e^- \rightarrow CO + H_2O$	-0.53
$CO_2+4H^++4e^- \rightarrow C+2H_2O$	-0.20
$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$	-0.48
$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2C$	0 -0.38
$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$	-0.24

Figura 1.6. Potenciales estándar para las reacciones de electrolisis de CO₂ en medio acuoso[13]

Alternativamente, los experimentos de ER-CO₂ se realizan en condiciones no acuosas para evitar la HER, promoviendo así la generación de un grupo reducido de productos orgánicos. Los disolventes de bajo contenido prótico como el carbonato de propileno (PC), acetonitrilo (AN), N,N-dimetilformamida (DMF), dimetilsulfoxido (DMSO) y tetrahidrofurano (THF) se han empleado en la preparación de electrolitos no acuosos para la ER-CO₂.

En la Figura 1.7 se observa una tabla de solubilidad de CO₂ en estos disolventes y en el agua, revelando que la solubilidad en acetonitrilo (AN) es la mayor (0.280 M a 298 K y 1 atm), pero la alta volatilidad del AN (presión de vapor de 13.2 kPa a 298 K [3,4]) hace complicado establecer una concentración estacionaria de CO₂. El carbonato de propileno (CP) en comparación, tiene muy baja volatilidad (0.003 KPa a 298 K [14]) y la solubilidad del CO₂ es 4 veces mayor que en el agua (0.140 M a 298 K). Por esta razón es uno de los disolventes de preferencia para estudiar la ER-CO₂ [16].

Solvente	Solubilidad (M)
agua	0.0033
carbonato de propileno	0.14
acetonitrilo	0.24
dimetilsulfoxido	0.135
N,N-dimetilformamida	0.175
tetrahidrofurano	0.211

Fig 1.7 Solubilidades de CO2 en diferentes disolventes a 298 K y 1 atm. Tomada y modificada de [17].

1.4.1 Reducción electroquímica de CO2 sobre electrodos metálicos

Para mejorar las técnicas de ER- CO₂ se tiene que superar la dificultad de trabajar con una molécula tan estable y poco soluble en medios acuosos y no acuosos. La molécula de CO₂ tiene un fuerte enlace C=O con una energía de enlace de 750 kJ mol⁻¹ (considerablemente mayor que el enlace C-C (336 kJ mol⁻¹), C-O (327 kJ mol⁻¹), o C-H (411 kJ mol⁻¹)). También, la ER-CO₂ consta de varios mecanismos de reacción con una trasferencia electrónica de 2,4,6,8,12 o más electrones; debido a esto, en la ER-CO₂ se pueden obtener diferentes productos como CO, HCOOH, CH₄, C₂H₄ y otros dependiendo de la naturaleza de la catálisis. Como resultado se considera a la ER-CO₂ como poco selectiva y con un límite en la eficiencia [1].

Una alternativa para resolver este problema consiste en trabajar con electrodos metálicos modificados con electrocatalizadores especializados para evitar el problema de la fugacidad del CO₂ a partir de medios acuosos y no acuosos, insertando un difusor de este gas dentro de un sistema electroquímico. Además de obtener un producto selectivo dependiendo del electrodo, el sobrepotencial aplicado o el medio que se utilice en la ER-CO₂.

Muchos metales han sido estudiados como reductores electrocatalíticos para la ER-CO₂ en las últimas décadas. Entre ellos se encuentra el estaño, la plata, el oro, y el cobre. Los principales productos de la reducción de CO₂ son el CO y derivados de carbono. En 1870 E. Royer [17] fue el primer científico en reducir el CO₂ a los ácidos oxálicos y fórmico mediante la aplicación de una corriente eléctrica. En 1994 el científico Pierre van Rysselberghe [18] reporto los primeros polarogramas para la reducción de CO₂ con electrodos de Hg en medio orgánico con bromuro de tetrametilamonio (Me₄NBr). En 1985 Hori y colaboradores [19] reportaron la formación de CO, CH₄ y otros hidrocarburos durante la electrolisis de CO₂ en varios electrodos metálicos (Cd, Zn, In y Pb). Cook [20] y colaboradores lograron observar la formación de formaldehido, ácido fórmico y acetaldehídos en la reducción de CO₂ en Cu, descubriendo también la formación de varios intermediarios en la reacción.

Basado en los productos de reducción los metales se pueden dividir en tres grupos: El primer grupo incluye: Sn, Pb, Bi, In, entre otros. Estos metales difícilmente absorben el intermediario CO₂•-. Este intermediario se protona fácilmente y se transformar en ácido fórmico y/o formiatos.

El segundo grupo incluye: Au, Zn, Pd, Ga, entre otros. Estos metales pueden adsorber al intermediario CO₂•- y producir CO como producto mayoritario de la reducción que al protonarse dará lugar a compuestos orgánicos de bajo peso molecular.

El tercer grupo incluye: Pt, Ti, Ni, Fe, entre otros. Estos metales tienen fuertes propiedades de adsorción de CO, dando como resultado hidrógeno gas como producto mayoritario de reacción [21].

	Potential (V)	Current				Faradaic e	ficiency	/%		
Electrode	vs. nhe	(mA cm ⁻²)	CH₄	C_2H_4	EtOH	PrOH	co	HCOO-	H ₂	Total
Cu	- 1.44	5.0	33.3	25.5	5.7	3.0	1.3	9.4	20.5	103.5*
Au	-1.14	5.0	0.0	0.0	0.0	0.0	87.1	0.7	10.2	98.0
Ag	-1.37	5.0	0.0	0.0	0.0	0.0	81.5	0.8	12.4	94.6
Zn	-1.54	5.0	0.0	0.0	0.0	0.0	79.4	6.1	9.9	95.4
Pd	-1.20	5.0	2.9	0.0	0.0	0.0	28.3	2.8	26.2	60.2
Ga	-1.24	5.0	0.0	0.0	0.0	0.0	23.2	0.0	79.0	102.0
РЬ	-1.63	5.0	0.0	0.0	0.0	0.0	0.0	97.4	5.0	102.4
Hg	-1.51	0.5	0.0	0.0	0.0	0.0	0.0	99.5	0.0	99.5
In	-1.55	5.0	0.0	0.0	0.0	0.0	2.1	94.9	3.3	100.3
Sn	-1.48	5.0	0.0	0.0	0.0	0.0	7.1	88.4	4.6	100.1
Cd	-1.63	5.0	1.3	0.0	0.0	0.0	13.9	78.4	9.4	103.0
TI	-1.60	5.0	0.0	0.0	0.0	0.0	0.0	95.1	6.2	101.3
Ni	-1.48	5.0	1.8	0.1	0.0	0.0	0.0	1.4	88.9	92.41
Fe	-0.91	5.0	0.0	0.0	0.0	0.0	0.0	0.0	94.8	94.8
Pt	-1.07	5.0	0.0	0.0	0.0	0.0	0.0	0.1	95.7	95.8
Ti	-1.60	5.0	0.0	0.0	0.0	0.0	tr.	0.0	99.7	99.7

Tabla 1.1. Productos de la ER-CO2 en 0.1 M KHCO3 a 18.5 °C. Tomada de [21]

En la ER-CO₂ el cobre (Cu) es el reductor de referencia de CO₂, ya que se ha comprobado que este metal es capaz de producir carbonos C1-C3 en eficiencias excelentes [22][23]. Esto es de gran importancia, porque a partir de los productos de electro-reducción de CO₂ en Cu se pueden obtener combustibles como el metano,

metanol, etano, etileno y etanol. En este contexto, Jaramillo y colaboradores reportaron diferentes productos generados de la reducción de CO₂ sobre superficies de Cu (Fig 1.8).

Producto	# e-	E (V vs. ENH)	Producto	# e-	E (V vs.ENH)
formiato	2	-0.02	acetaldehído	10	0.05
monóxido de carbono	2	-0.10	etanol	12	0.09
metanol	6	0.03	etileno	12	0.08
glioxal	6	-0.16	hidroxiacetona	14	0.46
metano	8	0.17	acetona	16	-0.14
acetato	8	-0.26	alcohol alílico	16	0.11
glicoaldehido	8	-0.03	propionaldehido	16	0.14
etilenglicol	10	0.20	1-propanol	18	0.21

Fig 1.8 Productos formados a partir de la reducción de CO₂ en una superficie de cobre a pH 6.8 y el número de electrones necesarios para producir cada uno. Tabla tomada y modificada de [22].

Además de los productos comunes, algunos aldehídos, cetonas, ácidos carboxílicos, ésteres e hidrocarbonos como parafinas y olefinas también se generan como productos menores en la electrocatálisis en Cu. Sin embargo, la reducción de CO₂ es un reto cinético; muchos de estos productos no pueden ser generados en rangos significativos hasta potenciales muy negativos (←0.8 V vs RHE) y la eficiencia farádica es menos al 30 % [22]. Yano y colaboradores [24] reportaron la formación de CO, CH₄ y etileno en un electrodo fabricado con una red de Cu, obteniendo una electroreducción entre -0.6 V a - 2.2 V vs Ag/AgCl con una eficiencia farádica del 10% para metano y 40% para etileno.

Sin embargo, los mejores hallazgos se han logrado en medios no acuosos. Algunos autores han observado que formación de CH₄ y etileno en diferentes medios no acuosos con eficiencias farádicas del 10% para etileno y 5 % para CH₄ [19,24]. Mientras tanto, la preparación de hidrocarburos en medios acuosos es considerada un gran avance [25],

debido a todas las dificultades ya discutidas que presenta la formación de CO₂ en este tipo de medios.

Las ventajas que presenta la reducción de CO₂ con electrodos de Cu son muchas, ya que también esta reducción se puede realizar a temperatura y presión ambiente, además de la simplicidad del método. Pero una de las dificultades de utilizar electrodos de Cu en la ER-CO₂ es la selectividad que presenta en sus productos, por lo que no se obtiene un producto fijo lo que puede ocasionar la formación de productos no deseados.

1.4.2 ER-CO₂ sobre semiconductores

Además del Cu y otros metales, la ER-CO₂ también ha sido investigada usando una gran variedad de materiales como no metales, semiconductores, compuestos de coordinación y compuestos organometálicos, [17] con la finalidad de realizar un ER-CO₂ más selectiva en cuanto a los productos que se desea obtener (Fig 1.9)

Fig 1.9 Tipos de materiales y compuestos estudiados para la ER-CO2. Imagen tomada de [13].

En 1979, Honda y colaboradores demostraron la conversión de CO₂ a componentes orgánicos en suspensiones acuosas de óxidos y no óxidos de partículas de semiconductores bajo iluminación UV [26]. A partir de este descubrimiento, diferentes semiconductores como TiO₂, ZnO.SnO₂. WO₃, Fe₃O₄, CdS y ZnS han sido empleados para la ER-CO₂.

El proceso por el cual los semiconductores pueden realizar un ER-CO₂ se debe su capacidad de absorber fotones [26].

Para realizar una ER-CO₂ apropiada en un medio acuoso, se tienen que considerar algunos criterios del semiconductor como la posición del borde de las BC y BV. El borde de la BC debe estar localizado a un potencial que es más negativo que el potencial de reducción del CO₂, mientras que el borde de BV debe estar localizado a un potencial más positivo que la oxidación del agua [27].

Debido a las propiedades foto catalíticas del TiO₂ se puede utilizar para la ER-CO₂. La energía de band gap (E_{bg}) del TiO₂ es de 3.2 eV en fase anatasa y cercano a 3 eV en fase rutilo. En la foto-irradiación (si $E_{hv} > E_{bg}$; donde E_{hv} es la energía de un fotón incidente de luz), el TiO₂ produce un par electrón-hueco. El paso preliminar en la oxidación fotocatalítica del TiO₂ es la formación de radicales hidroxilo (•OH, E°= 2.72 V, en un oxidante fuerte) y superóxido (O₂•, E°= -0.33 V) a través de reacciones de fotogeneración par electrón-hueco con solutos presentes (agua y aire) presentes en el sistema (Eq 1.1 y 1.2) [26].

$$\Gamma iO_2 -hv \rightarrow e^- + h^+ (par electrón-hueco)$$
(1.1)

$$h^{+} + H_2O \rightarrow \bullet OH + H^{+} + TiO_2$$
(1.2)

Estudios previos han demostrado que la CO₂-ER se incrementa en los materiales de TiO₂ con defectos de superficie cristalina (estados superficiales), conocidos como las vacancias de oxígeno Ti³⁺-V₀-Ti³⁺. La creación de vacancias de oxígeno en la superficie de TiO₂ puede inducir a una reducción aparente del band gap del TiO₂ gracias a que poseen foto respuesta. Asimismo, las vacancias de oxígeno Ti³⁺-V₀-Ti³⁺ son sitios de adsorción y activación de reactivos. Kamat y colaboradores encontraron que las especies de Ti³⁺ formadas sobre el TiO₂ sometido a potenciales lo suficientemente negativos, son identificadas como sitios activos para la ER-CO₂. La unión catalíticamente activa de Ti³⁺ seguida por la transferencia electrónica, facilita el proceso de reducción formando metanol como producto cuando se efectúa la reducción en acetonitrilo como disolvente [28]. Sin embargo, en medio acuoso, la evolución de H₂ sigue siendo una problemática por resolver.

Fig 1.10 ER-CO₂ vía la conversión de átomos de Ti³⁺ a Ti⁴⁺ presentes en TiO₂. Tomada de [7].

En este trabajo se utilizará como semiconductor el TiO₂ nanoparticulado debido a su baja toxicidad, buenas propiedades fotoquímicas y electroquímicas, y un bajo costo comercial.

1.5 Reducción foto electroquímica de CO2

La foto-reducción de CO₂ se refiere a la conversión de CO₂ a componentes orgánicos mediante la irradiación de luz visible o UV. Esta técnica de reducción de CO₂ es considerado como uno de los métodos más atractivos para la utilización de CO₂ debido a la abundancia y libre acceso a la luz solar.

La molécula de CO₂ no absorbe la luz visible o la radiación UV en 200-900 nm, por lo que este proceso necesita de materiales semiconductores foto-catalíticos, que absorban suficiente luz en dicho intervalo de energía luminosa como para activar los enlaces C=O (750 kJ mol⁻¹) del CO₂ [27].

Las posibles reacciones que se involucran en el proceso de foto-electroreducción de CO₂ en agua sobre una superficie de TiO₂ se muestran en la Fig 1.11.

Fig 1.11. Reacciones involucradas en la fotocatálisis reducción de CO₂ con agua en TiO₂ con sus respectivos potenciales (V vs ENH) a pH 7.

El paso inicial de la foto-electroreducción de CO₂ sobre TiO₂ es la generación de un par electrón-hueco sobre la absorción de fotones de mayor energía que la del ban dgap del TiO₂. El siguiente paso es la separación espacial de electrones y huecos del material. Este proceso está en competencia directa con la recombinación de carga y depende de las propiedades del material como la cristalinidad, la dimensión y la superficie. Para mejorarla eficiencia fotocatalítica se requiere suprimir su posible la recombinación mediante la modificación adecuada de las estructuras del material[1].

El tercer paso consiste en la absorción de la molécula de CO₂. En general, una superficie con una gran superficie catalítica mejora la adsorción del CO₂. Una manera de promover la adsorción superficial del CO₂ es modificar alcalinamente la superficie para aprovechar que la molécula de CO₂ se comporta como un ácido de Lewis. La Fig 1.12 muestra la adsorción de CO₂ sobre la superficie de TiO₂, se aprecia que hay una interacción bidentada y monodentada debido a la acidez de Lewis, y la absorción por una vacancia de oxigeno (Ti³⁺-V₀-Ti³⁺) [28].

Fig1.12. Adsorción de CO₂ sobre superficie de TiO₂ (a) bidentada, (b) monodentada y (c) por una vacancia de oxigeno (Ti³⁺). Tomada de [28]

El siguiente paso es la reacción redox superficial (Fig1.13), aquí los electrones, después de migrar a la superficie, reaccionan con el CO₂ absorbido en la superficie y producen un ion CO₂⁻⁻ que reacciona con los protones del medio provocando la producción de compuestos orgánicos. Mientras que los huecos formados debido a la foto-excitación en la BV del TiO₂ oxidan las moléculas de agua (donadores de electrones) para producir O₂ y protones.

Fig 1.13 Reacción Redox de CO₂ sobre TiO₂. Imagen tomada de [29].

Muchos estudios se han llevado a cabo con la intención de proveer de un mecanismo para entender la ER-CO₂, especialmente en la producción de formatos, CO y compuestos orgánicos como etilenos, alcoholes, formiatos. La Fig1.14 muestra una aproximación de cada uno del mecanismo a algunos productos de la ER-CO₂.

Fig1.14 Mecanismo de reacción de la ER-CO₂ a: (a) formiato, (b) CO y (c) etileno, etano y etanol empezando de la adsorción de CO. Imagen tomada de [30].

Los estudios sobre el mecanismo de reacción de la ER-CO₂ sobre TiO₂ aún siguen siendo un reto que se debe seguir investigando.

1.6 Reducción electroquímica de CO2 sobre electrodos de materiales carbonosos

Para aumentar la eficiencia catalítica del TiO₂ se ha reportado que añadir otros materiales, como el carbono, promueven la adsorción de los compuestos orgánicos para su transformación. El efecto del carbono sobre la eficiencia catalítica del TiO₂ ya ha sido investigada y varios autores han informado sobre su efectividad fotocalítica [2].

El elemento carbono, con un número atómico de 6, posee una configuración electrónica [He] 2s²2p². Los átomos de carbono pueden adoptar tres tipos de hibridación de orbitales: sp³, sp² y sp, que dan lugar a tres estructuras básicas del carbono: diamante, grafito y

carbinos respectivamente. La Tabla 1.3 resume la relación existente entre tipos de enlace, estereoquímica y estructuras del carbono sólido [31].

Tipo de hibridación	Estereoquímica	Estructuras
cm ³	Tetraédrica	Diamante
sp	Tetraeurica	Lonsdaleíta
		Grafito hexagonal
sp ²	Trigonal plana	Grafito
		romboédrico
sp	Lineal	Carbinos

Tabla 1.3 Relación entre la hibridación, estereoquímica y estructuras del carbón solido[31].

Las formas de carbono sp², como el grafeno, son las formas alotrópicas más utilizadas en la [32] catálisis químicas. En los últimos años la fotocatálisis en materiales semiconductores a base de grafeno han tenido interés, ya que se ha demostrado que el grafeno es un aceptor de electrones eficaz para mejorar la transferencia de carga y reducir de forma efectiva la recombinación de los pares electrón-hueco en el composito para mejorar la actividad fotocatalítica [33]. Kamat y colaboradores trabajaron para mejorar la actividad fotocatalítica del grafeno basado en compositos de materiales semiconductores [34]. Zang y colaboradores demostraron que la utilización nanocompositos TiO₂-grafeno mejoran la degradación fotocatalítica de contaminadores orgánicos. Xiang y colaboradores estudiaron la fotocatálisis en compositos con grafeno modificados con TiO₂ para el mejoramiento en la producción de hidrogeno bajo luz visible [35]. El inherente ancho de banda por parte del grafeno abre las posibilidades para aplicaciones catalíticas, como la reducción de CO₂. En nuestro trabajo experimental no se utilizará el grafeno como fuente de carbono para la ER-CO2 sino el carbon vulkan XR-72C marca Cabot, debido a su fácil acceso y bajo costo a comparación del grafeno.

La Fig1.15 muestra como el carbono puede ser utilizado como fotocatalizador junto con el TiO₂. Se ha descubierto que cuando el TiO₂ es dopado con carbono, la energía efectiva óptica del band gap del TiO₂ disminuye de 3.2 eV a 2.8 eV promoviendo una absorción en la región visible [36] aumentado su eficiencia fotocatalítica

Fig 1.15. Diagrama del mecanismo para la acción foto catalítica de capas TiO₂/C [2].

Los materiales carbonosos también se han aplicado en la ER-CO₂ a virtud de su buena conductividad eléctrica, bajo costo, estabilidad química y gran área superficial. Sin embargo, los materiales carbonosos son inertes a temperatura y presión ambiental, en ausencia de un campo eléctrico, tiene actividad despreciable ante la ER-CO₂. Esto se debe a que la molécula de CO₂ es altamente geométrica y en consecuencia no se absorbe espontáneamente en la superficies del material carbonoso [1]. Para sobrepasar esto, se ha tratado de dopar a estos materiales con hetero-átomos. Geioushy y colaboradores [37] han reportado eficiencias altas en la ER-CO₂ con un electrodo preparado a partir de una lámina de Cu recubierta con compositos de grafeno/Cu₂O. Este electrodo fue significativamente más activo ante la ER-CO₂ con una densidad de corriente de 12.2 mA/cm² a -1.7 V vs. Ag|AgCI.

En trabajos recientes se ha tratado de estudiar la electroreducción del CO₂ en superficies carbonosas. S. Perez-Rodríguez [38] reporto el comportamiento químicos superficial del carbón Vulcan XC-72R marca Cabot en la electroreducción de CO₂. En la Figura 1.16 se observa un fuerte decaimiento de corriente en -1.1 V en la presencia de CO₂, el cual puede ser asociado con la adsorción de especies de la reducción de CO₂, como CO y formatos. Mientras que en las pruebas con una solución saturada de Ar se observa un decaimiento en -1.1 V, el cual se es asociado con la formación de H₂. Este último dato es de suma importancia ya que resolvería el problema de utilizar medios acuosos en la electroreducción.

Figura 1.16 Voltamperogramas cíclicos de electrodos modificados con vulcan en 0.1 M NaHCO₃ (v= 5mv/s) en ausencia (cuvas sólidas) y presencia de CO₂ (curvas punteadas). Tomada de [38].

Con base en lo mencionado anteriormente, es razonable pensar que la combinación de las propiedades fotocatalíticas y electrocatalíticas de ER-CO₂ en materiales carbonosos y óxidos semiconductores como el TiO₂, pueden ser combinadas apropiadamente para obtener cátodos con propiedades catalíticas reforzadas, en comparación con aquellas exhibidas por los materiales separados.

El soporte de electrodo usado para depositar el TiO₂ será una malla de acero inoxidable AISI 304 (ss-304, criba 80) conformado por una aleación del tipo FeCr18Ni10. El acero inoxidable es un material barato, fácil de manipular y usado para muchas aplicaciones donde se necesita una buena resistencia a la corrosión [39]. En este sentido, la resistencia mejorada de ss-304 contra la corrosión se debe a la presencia de recubrimientos de cromita Cr₂O₃. Finalmente, debido a que se trata de una malla, se puede utilizar como electrodo difusor de CO₂ y de este modo facilitar ER-CO₂.

2. Metodología experimental

 Como soporte de electrodos se utilizó una malla de acero inoxidable AISI 304 (ss-304, criba 80, FeCr18Ni10), previamente cortada en trozos de 1cm ancho x 2cm largo. Cada trozo de malla se pulió con lija de SiC (600 granos/in²), luego se enjuagaron con agua deionizada (ρ>18 MΩ·cm).

Fig 2.1 a) Malla de ss-304 cortada sin pulir, b) Malla de ss-304 cortada pulida y desengrasada.

 Los trozos de las mallas de ss-304 pulidas fueron sonicadas en un baño ultrosónico (42kHz) por 10 minutos en etanol y después 10 minutos en agua deionizada para limpiar y desengrasar.

Fig 2.2 Baño ultrasónico (42 kHz) marca Cole-Parmer con calefacción.

Estas páginas fueron eliminadas debido a que su contenido es información clasificada como confidencial de acuerdo con el Artículo 113 fracción II de la Ley Federal de Transparencia y Acceso a la Información Pública 2017, y con el Artículo 116 de la Ley General de Transparencia y Acceso a la Información Pública 2015. mW/cm² por otros 10 min. Después se introdujeron 20 μ l de HCO₃⁻ 2.502x10⁻⁶ M (ver Anexo D) en la solución BS pH 2 (I=0.1) con los electrodos sumergidos e iluminados y se dejaron por otros 10 minutos hasta completar 30 min desde el inicio del experimento hasta este último punto.

Los productos obtenidos en la ER-CO₂ después de cada experimento se sometieron a HPLC para obtener la cantidad de %v/v etanol. Los resultados de %v/v etanol se muestran en la Tabla 3.10 junto con los resultados de la Tabla 3.8 para su comparación.

Electrodo	%v/v etanol (ver Tabla 3.8)	% v/v (ion HCO₃⁻)
ss-304/TiO ₂	0.302 ± 0.023	0.308 <u>+</u> 0.014
ss-304/TiO ₂ /C	0.308 ± 0.016	0.303+0.019

Tabla 3.10 %v/v etanol formado debido ER-CO2 en la Fotocatálisis utilizando la lámpara UV y HCO3°.

La Tabla 3.10 muestra que tanto cuando se inyecta con CO_2 por 10 minutos o cuando se agregan 20 µL de HCO_3^- 2.502x10⁻⁶ M en la ER-CO₂ no hay un cambio en el %v/v etanol. De esta manera se comprueba que la molécula de HCO_3^- se adsorbe por parte de la película de TiO₂ y TiO₂/C como se había discutido en la sección anterior.

Retomando todos los resultados anteriores, se sugiere que el mecanismo (Fig 3.31 y Fig 3.32) que sigue la ER-CO₂ en los electrodos ss-304/TiO₂ y ss-304/TiO₂/C comienza con la interacción del CO₂ disuelto en la solución BS pH 2 (fueza iónca l=0) con los iones H⁺ en la solución BS. Esta interacción provoca la formación del ion HCO₃⁻⁻ que luego es adsorbido por los sitios activos Ti³⁺-Vo-Ti³⁺ superficiales formados en la foto-excitación por parte de la lámpara UV (365 nm). La molécula de HCO₃⁻⁻ adsorbida se reduce debido a los electrones liberados por la BC de la capa de TiO₂ o TiO₂/C hasta obtener un radical •CH₃O. La acumulación de radicales •CH₃O fuertemente absorbidos por la capa de TiO₂ y TiO₂/C provoca la dimerización entre dos moléculas de •CH₃O (ver Fig 3.24) que después de una hidrogenación debido al medio rico en H⁺ se liberan como moléculas CH₃CH₂OH disueltas en la solución BS [28,105,123–126].

Cabe mencionar que los huecos (h_{bv}^+) intersticiales formados en BV de la película de TiO₂ y TiO₂/C cuando se fotoexcita provocan la oxidación del H₂O(reacción 5) [123,124,127,128]. La interacción de los iones H⁺ formados en la oxidación del H₂O y de la evolución del hidrógeno (HER) en la ER-CO₂ será estudiada más adelante.

$$H_2O + 2h_{vb}^+ ---> 2H_{aq}^+ + 1/2 O_2$$
 (5)

$$CO_{2} + H_{2}O \rightleftharpoons H^{+} + HCO_{3}^{-} K_{eb} = 4.4 \times 10^{-7}$$

$$HCO_{3}^{-} + 2H^{+} + 2e_{cb}^{-} \rightarrow HCO_{2}^{0-} + H_{2}O$$

$$HCO_{2}^{0-} + H^{+} + e_{cb}^{-} \rightarrow CO + H_{2}O$$

$$\bullet CO + H^{+} + e_{cb}^{-} \rightarrow \bullet CHO$$

$$\bullet CHO + 2H^{+} + 2e_{cb}^{-} \rightarrow \bullet CH_{3}O$$

$$\bullet CH_{3}O + H^{+} + e_{cb}^{-} \rightarrow 1/2 CH_{3}CH_{2}OH + 1/2 H_{2}O$$

$$CO_{2} + 6H^{+} + 6e_{cb}^{-} \rightarrow 1/2 CH_{3}CH_{2}OH + 3/2 H_{2}O$$

Fig 3.31 Mecanismo de ER-CO₂ en electrodos ss-304/TiO₂ y ss-304/TiO₂/C

Fig 3.32 Esquema del mecanismo de Reacción de la ER-CO₂ sobre electrodos de a) ss-304/TiO₂ y b)ss- $304/TiO_2/C$

3.3 Estudio de la Generación Electroquímica de Hidrógeno (HER) en la ER-CO₂ con los electrodos ss-304/TiO₂ y ss-304/TiO₂/C

3.3.1 Caracterización voltamperométrica de electrodos ss-304/TiO₂ y ss-304/TiO₂/C

Los resultados anteriores sugieren que la formación de H⁺ foto-catalítica se debe a la reacción de oxidación del H₂O por parte de los sitios interfaciales en la BV en el TiO₂ [129]. La formación de H⁺ no interfiere en la cantidad de producción de etanol. Sin embargo, para investigar la influencia de HER en la ER-CO₂ los electrodos de ss-304/TiO₂ y ss-304/TiO₂/C fueron voltamperométricamente caracterizados en una celda de tres electrodos conteniendo BS como electrolito. En este sentido, un alambre de platino se usó como electrodo auxiliar, y los potenciales interfaciales fueron referidos a Ag|AgCl 3M NaCl.

Fig 3.33. Voltamperometría cíclica de a) electrodo ss-304/TiO₂ y b)ss-304/TiO₂/C en BS a 50 mV/s

La Fig 3.31 muestra las respuestas voltamperométricas de los electrodos ss-304/TiO₂ y ss-304/TiO₂/C sumergidos en BS. En los electrodos de ss-304/TiO₂ (Fig. 3.33 a) la respuesta asignada a la Reacción 6 se observa como un dominio de potencial ancho entre -0.6 y -0.9V, mientras que en el electrodo ss-304/TiO₂/C (Fig. 3.33 b) la misma respuesta se observa como una señal un poco más definida entre -0.4 y -0.7V.

$$(Ti^{|V})_4(O^{2-})_8 + H^+ + e^-_{bias} \to (H^+)(Ti^{|V})_3(Ti^{|||})(O^{2-})_8$$
(6)

La Reacción 7 (HER) es significativa a partir de -0.9 y -0.7V en electrodos ss-304/TiO₂ y ss-304/TiO₂/C, respectivamente.

$$(H^{+})(Ti^{IV})_{3}(Ti^{III})(O^{2-})_{8} + e^{-} \rightarrow (Ti^{IV})_{4}(O^{2-})_{8} + \frac{1}{2} H_{2}$$
(7)

El efecto de la formación de los de sitios activos de Ti³⁺-Vo-Ti³⁺ en la superficie debido a un potencial aplicado por parte del potenciostato (V_{bias}) en la ER-CO₂ se investigará con la técnica de espectroelectroquímica UV-Vis.

3.3.2 Espectro-electroquímica UV-Vis de electrodos ss-304/TiO2 y ss-304/TiO2 /C

Para corroborar los resultados obtenidos de los espectrómetros voltamperométricos se realizan los espectros de UV-Vis de los electrodos ss-304/TiO₂ y ss-304/TiO₂/C. Para esto se utilizó una celda de cuarzo transparente con una ranura para colocar el electrodo (Fig 3.34) a través de la cual se hizo pasar un láser para obtener los espectros UV-Vis en cada experimento. En este sentido, los potenciales interfaciales fueron referidos a Ag|AgCl 3M NaCl. Al igual que los experimentos de voltamperometria, el límite de potencial catódico fue intencionalmente desplazado en 0.2 V a partir del E_{OC} hasta observar la HER.

Fig 3.34 Celda de cuarzo montada para sistema de UV-Vis.

En la Fig 3.35 se muestran las respuestas espectro-electroquímicas de ss-304/TiO₂ y ss-304/TiO₂/C sumergido en BS deoxigenado y libre de CO₂.

Fig 3.35. Respuesta espectroelectroquímica de a) electrodo ss-304/TiO₂ y b) ss-304/TiO₂/C.

En el espectro correspondiente al electrodo de ss-304/TiO₂ (Fig 3.35 a) se observa una disminución progresiva de transmitancia a partir de -0.6V y hasta -1.2V. Este resultado indica que la densidad superficial de especies (H⁺)(Ti^{IV})₃(Ti^{III})(O²⁻)₈ (de color azul obscuro, $\lambda_{onset} \approx 450$ nm) aumenta (vía la Reacción 6) a medida que el potencial se vuelve más catódico [7]. Sin embargo, podemos inferir que la evolución de H₂ se vuelve significativa hacia -1.2V, porque cuando el potencial alcanza un valor de -1.3V, la transmitancia

vuelve a incrementar debido a que la película de TiO₂ se desprende de la superficie de ss-304 por efecto de la evolución generalizada de H₂ provocando a un hinchamiento en la película de TiO₂ [92]. Este resultado concuerda con los resultados voltamperométrico obtenidos para el mismo electrodo (Fig. 3.35 a). En contraste, el espectro obtenido para el electrodo de ss-304/TiO₂ (Fig 3.35 b) se observa que la disminución progresiva de transmitancia ocurre a partir de -0.4V y hasta -1.0V. Este resultado indica que la HER se vuelve significativa hacia -1.0V, porque cuando el potencial alcanza un valor de -1.1V, la transmitancia vuelve a incrementar debido a que la película de TiO₂/C se desprende de la superficie de ss-304 a causa de la HER.

3.3.3 Respuesta Electro-catalítica del electrodo ss-304/TiO₂ y ss-304/TiO₂ /C y Calculo de rendimiento Cuántico

Una vez localizados los potenciales de formación de Ti³⁺ (ETi³⁺) y los potenciales de formación HER (E_H) se realizó la electrocatálisis con los electrodos ss-304/TiO₂ y ss-304/TiO₂-C. La Foto-catálisis se realizó en las mismas condiciones y siguiendo la misma metodología que en la sección 3.2.1. Después de la Foto-catálisis se impuso un V_{bias} desde E_{oc} (potencial registrado en los electrodos **ss-304/TiO₂ y ss-304/TiO₂ /C** después de la Foto-catálisis) hasta –0.9 V utilizando el electrodo ss-304/TiO₂ y 304/TiO₂/C. Este último paso se realizó por media hora midiendo la corriente. No se utilizó V_{bias} mayores a -0.9mV debido a que es en estos potenciales que la película de TiO₂ y TiO₂/C se desprende debido a la HER, como se discutió en la sección 3.3.2. Por último, el %v/v etanol formado en la solución BS después de cada experimento se examinó con HPLC. Los resultados de HPLC se muestran en la Tabla 3.11 junto con los %v/v etanol de la Tabla 3.9 y Tabla 3.10 para comparación.

Electrodo	ss-304/TiO ₂	ss-304/TiO ₂ /C			
$V_{bias}(V)$	%v/v etanol				
E _{oc}	0.302 ± 0.023	0.308 ± 0.016			
-0.3	0.302 ± 0.033	0.308 ± 0.048			
-0.4	0.322 ± 0.053	0.300 ± 0.005			
-0.5	0.288 ± 0.002	0.248 ± 0.028			
-0.6	0.314 ± 0.041	0.359 ± 0.018			
-0.7	0.415 ± 0.013	0.391 ± 0.011			
-0.8	0.314 ± 0.025	0.334 ± 0.029			
-0.9	_*	0.280 ± 0.025			
Luz Solar	0.292 ± 0.020	0.304 ± 0.015			

Tabla 3.11 %v/v etanol formado en la ER-CO₂ por electro-catálisis aplicando un V_{bias} (V) por 30 min. Nota: no se realizaron electro-catálisis en los V_{bias} de 0.1 V y 0.2 V debido a que en estos potenciales ocurre la formación de α-Fe₂O₃ y γ-Fe₂O₃ (ver Fig 3.19) podrían interferir en la ER-CO₂. * Resultado no observable debido a que la película de TiO₂/C comenzaba a desprenderse a V_{bias} =-0.9 V

Un análisis de la Tabla 3.11 demuestra que la producción de etanol en cada experimento no muestra un cambio comparándolo a cuando solo se aplica el E_{oc} (0 V vs Ag|AgCl 3M NaCl). Cabe mencionar que, en el E_{oc} , el electrodo solo se encuentra iluminado por el con la lámpara UV.

Al continuar aplicando V_{bias} hasta llegar a -0.9V, provoca una evolución de H₂ debido a la continua formación de sitios Ti^{III}OOH intersticiales, pero, el H₂ producido no interviene en la producción de etanol es por ello que no hay un cambio en la producción de etanol al aplicar un V_{bias}. Este resultado considera que el proceso de ER-CO₂ utilizando los electrodos de ss-304/TiO₂ y ss-304/TiO₂/C es solamente foto-catalítico y espontáneo.

Debido a que en la ER-CO₂ no se involucra un proceso electroquímico para calcular el rendimiento en la ER-CO₂ para la producción de etanol con los electrodos ss-304/TiO₂ y ss-304/TiO₂/C se utilizó el rendimiento cuántico.

El rendimiento cuántico es el número de veces que se reproduce un proceso en concreto por cada fotón.

 $\Phi_{I} = \frac{moléculas \ delproducto}{fotones \ absorbidos}$

Para obtener el Φ_1 se basa en un efecto por parte de una superficie porosa llamado *optical haze* (H, o *bruma óptica* por su traducción al español). ASTM Method D1003 define *bruma óptica* como el porcentaje de luz transmitida que al pasar a través de una muestra se desvía del haz incidente al dispersarse. Para fines prácticos, solo el flujo de luz que se desvía más que 2.5° en promedio se considera como *bruma* [130] (Ver Anexo E y F)

La Tabla 3.12 muestra los resultados de los rendimientos cuánticos.

Electrodo	Φı	н	$\frac{\Phi_{I,ss TiO_2}}{\Phi_{I,ss TiO_2/C}}$	$\frac{H_{ss TiO_2}}{H_{ss TiO_2/C}}$
ss-304/TiO ₂	12.7	0.78		
ss-304/TiO ₂ /C	8.8	0.53	1.44	1.47

Tabla 3.12 Rendimiento cuántico y H

El resultado de la relación entre el Φ_1 de cada electrodo (1.44) y la relación entre H de cada electrodo (1.47) es la misma. Esto nos muestra que el fenómeno de *bruma* está relacionado con la producción de etanol por los electrodos ss-304/TiO₂ y ss-304/TiO₂/C.

Conclusiones

- Se logró depositar TiO₂ nanoparticulado y una combinación de TiO₂ con carbón vulcan[™] XC-72R sobre malla de acero inoxidable AISI 304 mediante una técnica electroforética. De esta manera se logró construir electrodos de tipo ss-304/TiO₂ y ss-304/TiO₂/C que se emplearon en el estudio de la ER-CO₂ foto-asistida.
- Las pruebas de XPS practicadas a los electrodos de tipo ss-304/TiO₂ y ss-304/TiO₂/C, demostraron que el XC-72R no forma un enlace químico Ti-C en la superficie de TiO₂ depositado por lo que el carbono interactúa con el TiO₂ formando una heterounión. Asimismo, se observó la formación de α-Fe₂O₃ y γ-Fe₂O₃ en las superficies de los electrodos de tipo ss-304/TiO₂ y ss-304/TiO₂/C.
- La ER-CO₂ fotoasistida sobre electrodos de tipo ss-304/TiO₂ y ss-304/TiO₂/C condujo a la generación selectiva de etanol en una cantidad de 0.302 ± 0.023 %V/V y 0.308 ± 0.016 %V/V respectivamente. También se demostró que el proceso de ER-CO₂ en dichos electrodos es un proceso foto-catalítico y espontaneo.
- La HER en los ss-304/TiO₂ y ss-304/TiO₂/C se observó en potenciales cercanos a – 0.9V y el H₂ producido no interviene en la producción de etanol por lo que se evita esta reacción.
- Los rendimientos cuánticos internos (Φ₁) obtenidos para la fotocatálisis de CO₂ en con los electrodos de ss-304/TiO₂ y ss-304/TiO₂/C fueron de (12.7 y 8.8)(^{moléculasEtanol}/_{foton absorbido}) respectivamente.
- El resultado de la relación entre el Φ₁ de cada electrodo (1.44) y la relación entre H de cada electrodo (1.47) es la misma. Esto nos muestra que el fenómeno de *bruma* está relacionado con la producción de etanol por los electrodos ss-304/TiO₂ y ss-304/TiO₂/C.

Anexos

A) CALCULO DE Rf

El método para calcular el Rf de la película de TiO₂ y TiO₂/C se encuentra en la información complementaria SD-2 de la referencia [41].

$$Rf = \frac{Q_{TiO_2}^{*}}{Q_{TiO_2}^{exp}} m_{TiO_2}^{EPD} S_{TiO_2} (10^3 cm^2 m^{-2})$$

En donde $Q_{TiO_2}^*$ es la carga específica para la reducción del Ti (IV) (230.4µC cm⁻²), $Q_{TiO_2}^{exp}$ es la carga experimental asociada a la reducción del Ti(IV), que fue obtenida con el Voltamperograma lineal de la Fig 3.1 y obteniendo el promedio del experimento por triplicado se obtuvo 171.13 µC y de 53.275 µC para los electrodos ss-304/TiO₂ y ss-304/TiO₂/C respectivamente, m^{EPD} es la masa de TiO₂ y TiO₂/C depositada en el electrodo por EPD ,y S_{TiO_2} es el área específica para el TiO₂ (50 m²g⁻¹).

Para calcular $m_{TiO_2}^{EPD}$ y $m_{TiO_2/C}^{EPD}$ se utilizó la masa depositada en el área del electrodo por EPD: los resultados se muestran en la Tabla A.I

Electrodo	m ^{EPD} (g)
1 TiO₂	0.0021
2 TiO ₂	0.0019
3 TiO2	0.0021
1 TiO₂/C	0.0022
2 TiO₂/C	0.0019
3 TiO₂/C	0.0021

Tabla A.I Masa de TiO₂ y TiO₂/C depositada por EPD sobre la malla de ss-304.

Estos datos se sustituyeron en la fórmula del R_f antes mencionada

$$Rf_{Ti02} = 171 \pm 10$$

 $Rf_{Ti02/C} = 416 \pm 35$

A.I-Fracción expuesta por los hilos de alambre (Ao)

Para calcular el A₀ se utilizó la relación de la referencia [130]. Utilizando el diagrama de la Fig A.I y sabiendo que la malla ss-304 se obtienen las medidas mostradas en la Tabla A.2

ss-304 criba 80

w (mm)	0.18
d (mm)	0.14
p (mm)	0.32
Ao	0.32
1 -A o	0.68

 Tabla A.II Medidas obtenidas de la malla de ss-304.

Fig A.I Diagrama de tamizado de la malla de ss-304.

B) CO₂ TOTAL INYECTADO AL SISTEMA

Flujo $CO_2(H_2O) = 117 \text{ mICO}_2/\text{min}$

$$V_{CO_2(H_2O)} = \left(117 \frac{ml_{CO_2}}{\min}\right)(10min) = 1170 \ ml_{CO_2} = 1.170 \ L_{CO_2}$$

De acuerdo con las leyes de Dalton de las mezclas de gases ideales y de Roult de soluciones ideales.

$$P = P_{CO_{2},g} + P_{H_{2}O,g}$$
$$P_{CO_{2},g} = P_{V,CO_{2}}^{0} X_{CO_{2},s}$$
$$P_{H_{2}O,g} = P_{V,H_{2}O}^{0} X_{H_{2}O,s}$$

P ≈ Presión atmosférica de Pedro Escobedo Qro a 25°C : 1011 hPa = 101.1kPa = 758.31 mmHg.

 $P_{CO2,g}$ = Presión de CO₂ en fase gaseosa

 $P_{H_2O,g}$ = Presión de vapor de H₂O gaseosa = 31.699 hPa = 3.2 kPa

$$P_{CO_2,g} = P - P_{H_2O,g} = 101.1 \ kPa - 32 \ kPa = 97.9 \ kPa = 0.97 \ atm$$

$$P_{CO_2,g} = PX_{CO_2,s}$$

$$X_{CO_2,s} P_{CO_2,g} = \frac{P_{CO_2,g}}{P} = \frac{97.9kPa}{101.1kPa}$$
$$X_{CO_2,s} = 0.968$$

Por lo tanto, la ley de Amagat:

$$V_{CO_2,g} = X_{CO_2,g} V_{CO_2,(H_2O)}$$

 $V_{CO_2,g} = 0.968(1.17L) = 1.13L$

Así, según la ley del Gas Ideal

$$N_{CO_2,g} = \frac{P_{CO_2,g} V_{CO_2,g}}{RT}$$

 $N_{CO_{2},g} = \frac{(0.97 \ atm)(1.13L)}{(0.082 \ atmLk^{-1}mol^{-1})(298.15 \ k)} = \mathbf{0}.\mathbf{0448} \ molCO_{2} \ inyectados \ al \ sistema$

C) SATURACION CON CO₂

 $P_{CO_2,g} = 100 \text{ kPa se reporta } X_{CO_2,g} = 0.614 \text{ x} 10^{-3}.$

$$X_{CO_2,sol} = \frac{N_{CO_2,sol}}{N_{H_{2O}} + N_{CO_2,sol}} \qquad N_{H_{2O}} \gg \gg N_{CO_2,sol}$$

$$N_{CO_2,sol} = X_{CO_2,sol} \{ V_{sol} [H_2 O] \} = X_{CO_2,sol} V_{sol} \frac{\rho_{H2O}}{M_{H2O}}$$

$$\{CO_2\}_{teorico,sol} = X_{CO_2,sol} \frac{\rho_{H2O}}{M_{H2O}}$$

$$\{CO_2\}_{teorico,sol} = 0.614 \times 10^{-3} \left(\frac{1 \ g cm^{-3}}{10 \ g mol^{-1}}\right) \left(\frac{1000 \ cm^{-3}}{1 \ L}\right)$$

 $\{CO_2\}_{teorico,sol} = 0.0341 M$

De esta forma tenemos que:

$$N_{CO_2,sol} = 0.0341 \frac{mol}{L} (60 \ x 10^{-3} L)$$

$$N_{CO_2,sol} = 0.0020 \ mol \ CO_2$$

D) CALCULO DE LA CANTIDAD DE H₂CO₃

A partir de la cantidad de CO₂ total inyectada en la solución BS pH 2 (I=0.1) (N_{CO2,gas}) obtenida en el Anexo B, se calcula la cantidad de HCO₃⁻ equivalente necesaria obtener etanol por medio de la foto-catálisis en la ER-CO₂ utilizando electrodos de ss-304/TiO₂ y ss-304/TiO₂/C.

$$CO_2 + H_2O \rightarrow H_2CO_3$$
 $k = 4.4 \times 10^{-7}$ $\{CO_2\}_{teorico,sol} = 0.0341 M$

$$k = \frac{[H_2 C O_3]}{[C O_2] [H_2 O]} = 4.4 \times 10^{-7}$$

$$[H_2CO_3] = 4.4x10^{-3}[CO_2] [H_2O]$$
$$\{CO_2\}_{exp} = \frac{N_{CO_2,10min}}{Vsol} = \frac{0.048 \ mol}{60x10^{-3}L} = 0.7466 \frac{mol}{L}$$
$$[H_2O] = 55.55 \frac{mol}{L}$$

$$[H_2CO_3] = 1.825 x \, 10^{-5} \frac{1000}{L}$$

	H ₂ CO ₃	= H ⁺ +	HCO₃⁻
Inicio	CA	0	0
RxN	αСΑ	αΟΑ	<u>αC</u> A
Eq	C _A (1-α)	αCA	αCA

$$\frac{k_{\infty}}{C_A} = \frac{\alpha^2}{1 - \alpha}$$

$$\frac{10^{-6.4}}{1.825x10^{-5}} = \frac{\alpha^2}{1-\alpha} = 0.548x10^{-1.4} = 0.0218$$
$$\alpha^2 + 0.0218 \propto -0.0218 = 0$$

Resolviendo la Ecuación general

Por lo tanto:

$$[H_2CO_3] = C_A \propto = (0.1371) \left(\frac{1825x10^{-5}mol}{L}\right)$$
$$[H_2CO_3] = 2.502x10^{-6} mol/L$$

E) OBTENCION DE EINSTEIN A PARTIR DE LA POTENCIA LUMINOSA

Un Einstein es una unidad definida como la energía en una mol de fotones, por lo tanto, se utilizará para contabilizar los fotones emitidos por parte de la lámpara hv. Para ello la Energía de la foto (E_{foton}) se obtiene:

$$E_{foton} = h \frac{C}{\lambda}$$

Donde:

$$h = 6.626 x \ 10^{-34} Watts$$
$$C = 3.00 x \ 10^{17} nms^{-1}$$

Para nuestra lámpara Uv se tiene una $\lambda = 350 \ nm \ Foton$

$$E_{foton} = (6.626 \ x \ 10^{-34} Watts) \frac{3.00 \ x \ 10^{17} nms^{-1}}{350 \ nm \ Foton} = 5.44 x 10^{-13} \ \mu Watts \frac{s}{foton}$$

$$Einstein = \frac{P_{hv}}{E_{foton}} \left(\frac{1}{N_A}\right)$$

Donde N_A es el número de Avogadro y $Phv = 2000 \ \mu Watts \frac{s}{foton}$ para la lámpara de UV utilizada.

$$Einstein = \frac{P_{hv}}{E_{foton}} \left(\frac{1}{N_A}\right)$$

$$Einstein = \frac{2000 \ \mu Watts \frac{s}{foton}}{5.44 x 10^{-13} \ \mu Watts \frac{s}{foton}} \left(\frac{1 molfoton}{6.023 x 10^{23} \ fotones}\right)$$
$$= 6.10 x 10^{-9} \ molfoton/cm^2 s$$

F) RENDIMIENTO CUANTICO EXTERNO (Φ_E) E INTERNO (Φ_i)

El rendimiento cuántico es el número de veces que se reproduce un proceso en concreto por cada fotón.

 $\Phi_E = \frac{moléculas \ delproducto}{fotones \ incidentes}$

 $\varPhi_{I} = \frac{mol\acute{e}culas~delproducto}{fotones~absorbidos}$

Para obtener el Φ_i se basa en un efecto por parte de una superficie porosa llamado *optical haze* (H) (*Bruma* por su traducción al español). ASTM Method D1003 define *bruma* como el porcentaje de luz transmitida que al pasar a través de una muestra se desvía del haz incidente al dispersarse. Para fines prácticos, solo el flujo de luz que se desvía más que 2.5° en promedio se considera como *bruma* [130].

 $H = \frac{luz \ dispersa \ difusa}{total \ de \ luz \ transmitida}$

 Tabla B.1 Esquema del fenómeno bruma óptica (optical haze en inglés)

Por lo tanto:

$$H = \frac{1 - T - R}{R_{st} - R} \qquad donde \ T = \frac{I}{Io}$$

*H*_{TiO2}= 0.78

*Нтіо2/с=*0.53

Bajo estas condiciones solo se estudió el proceso foto-catalítico en la ER-CO₂, es decir, el proceso ocurrido en los 10 minutos de iluminación en cada electrodo. Donde etanol producido es de: N_{Etanol}= 0.0031 mol.

Para el electrodo de ss-304/TiO2

$$\Phi_E = \frac{N_{Etanol}N_A}{fotnes\ inducidos_{(Einstein\ incidentes)}A_{geom}f_rf_{malla}t_{rxn}N_A}$$

$$\Phi_E = \frac{(0.0031\ mol)(6.023x10^{23}\ moléculas\ Etanol\ mol^{-1})}{\left(6.10x10^{-9}\frac{molf\ oton}{cm^2s}\right)(1\ cm^2)(171)(0.68)(600\ s)(6.023x10^{23}\ mol^{-1})}$$

$$= 7.28\frac{moléculas\ Etanol}{f\ oton\ incidente}$$

Por lo tanto

$$\Phi_{I} = \frac{\Phi_{E}}{I - T - R} = \frac{7.28}{0.57} = 12.77 \frac{moléculasEtanol}{foton absorbido}$$

Para el electrodo de ss-304/TiO₂/C

$$\begin{split} \Phi_E &= \frac{(0.0031 \ mol)(6.023 x 10^{23} \ mol\acute{e} culas \ Etanol \ mol^{-1})}{\left(6.10 x 10^{-9} \frac{molfoton}{cm^2 s}\right)(1 \ cm^2)(416)(0.68)(600 \ s)(6.023 x 10^{23} mol^{-1})} \\ &= 3.09 \frac{mol\acute{e} culas \ Etanol}{foton \ incidente} \end{split}$$

Por lo tanto

$$\Phi_{I} = \frac{\Phi_{E}}{I - T - R} = \frac{3.09}{0.35} = 12.77 \frac{moléculasEtanol}{foton absorbido}$$

Bibliografía

- 1. J. Wu, Y. Huang, W. Ye, Y. Li, *Adv. Sci.*, 4 (2017) 1–29.
- J.M. Peralta-Hernández, J. Manríquez, Y. Meas-Vong, F.J. Rodríguez, T.W. Chapman, M.I. Maldonado, L.A. Godínez, *J. Hazard. Mater.*, 147 (2007) 588–593.
- 3. Global Monitoring Division (2019) Monthly Average Mauna Loa CO₂ https://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 09 Enero 2020
- 4. S. Arrhenius, Int. J. Circuit Theory Appl., 8 (1896) 373–393.
- Alejandra Martins (2019) BBC News Mundo Qué consecuencias tiene que hayamos superado el récord de CO2 en tres millones de años https://www.bbc.com/mundo/noticias-48283274. Accessed 09 Enero 2020
- 6. H. Morales, C. Torres, Tecnologías de Captura y Secuestro de CO2, (2008).
- 7. D. Jansen, M. Gazzani, G. Manzolini, E. Van Dijk, M. Carbo, *Int. J. Greenh. Gas Control*, 40 (2015) 167–187.
- 8. L. Romeo, I. Bolea, *Gecarbon.Org* (2015) 8–11.
- 9. P. Gauvillé, J.C. Foucher, D. Moreau, *J. South. African Inst. Min. Metall.*, 112 (2012) 437–447.
- Secretaria de Energía (2015) Gobierno de México Atlas de almacenamiento de CO₂:México. http://co2.energia.gob.mx/res/ATLAS%20FINAL.pdf. Accessed 09 Enero 2020.
- 11. H. Arakawa, M. Aresta et al, *Chem. Rev.*, 101 (2001) 953–996.
- 12. Q. Wang, Z. Zhang, S.M. Zakeeruddin, M. Gra, (2008) 7084–7092.
- 13. Q. Lu, F. Jiao, *Nano Energy*, 29 (2016) 439–456.
- 14. K. Nasirzadeh, R. Neueder, W. Kunz, J. Chem. Eng. Data (2005).
- 15. M.B. Ewing, J.C. Sanchez Ochoa, J. Chem. Eng. Data (2004).
- 16. B.R. Eggins, J. McNeill, J. Electroanal. Chem. (1983).
- 17. F.A. Viva, Adv. Chem. Lett., 1 (2013) 225–236.
- 18. T.E. Teeter, P. Van Rysselberghe, J. Chem. Phys. (1954).
- 19. Y. Hori, K. Kikuchi, S. Suzuki, *Chem. Lett.*, 14 (1985) 1695–1698.
- 20. R.L. Cook, J. Electrochem. Soc. (1989).
- 21. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, *Electrochim. Acta*, 39 (1994) 1833–1839.
- 22. K.P. Kuhl, E.R. Cave, D.N. Abram, T.F. Jaramillo, *Energy Environ. Sci.* (2012).

- 23. J. Lee, Y. Tak, *Electrochim. Acta*, 46 (2001) 3015–3022.
- 24. H. Yano, F. Shirai, M. Nakayama, K. Ogura, J. Electroanal. Chem., 519 (2002) 93–100.
- 25. D. Lowy, M. Jitaru, *Electrochem. Enabled Sustain.* (2014) 1–54.
- 26. G. Centi, S. Perethoner, Green Carbon Dioxide Advances in CO₂ Utilization, (2014).
- 27. V.P. Indrakanti, D. Kubicki, H.H. Schobert, *Energy Environ. Sci.* (2009) 745–758.
- 28. G.K. Ramesha, J.F. Brennecke, P. V. Kamat, ACS Catal., 4 (2014) 3249–3254.
- 29. D. Chu, G. Qin, X. Yuan, M. Xu, P. Zheng, J. Lu, *ChemSusChem*, 1 (2008) 205–209.
- 30. L.R.L. Ting, B.S. Yeo, *Curr. Opin. Electrochem.* (2018) 1–9.
- 31. J.M.D. Tascón, Opt. Pura y Apl., 40 (2007) 149–159.
- 32. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano, 4 (2010) 380–386.
- H.C. Hsu, I. Shown, H.Y. Wei, Y.C. Chang, H.Y. Du, Y.G. Lin, C.A. Tseng, C.H. Wang, L.C. Chen, Y.C. Lin, K.H. Chen, *Nanoscale*, 5 (2013) 262–268.
- 34. I. V. Lightcap, T.H. Kosel, P. V. Kamat, Nano Lett., 10 (2010) 577–583.
- 35. Q. Xiang, J. Yu, M. Jaroniec, J. Phys. Chem. C, 115 (2011) 7355–7363.
- C. Zhang, Q. Zhang, S. Kang, B. Li, X. Li, Y. Wang, *ECS Solid State Lett.*, 2 (2013) M49– M52.
- 37. R.A. Geioushy, M.M. Khaled, A.S. Hakeem, K. Alhooshani, C. Basheer, *J. Electroanal. Chem.*, 785 (2017) 138–143.
- 38. S. Pérez-Rodríguez, E. Pastor, M.J. Lázaro, *Int. J. Hydrogen Energy*, 43 (2018) 7911– 7922.
- 39. D.M.M.V.P. Pervan, M. Milun, *Croat. Chem. Acta*, 72 (1999) 737–750.
- 40. B.V. Morales Ponce, ELECTRODEPÓSITO DE Cu2O SOBRE ELECTRODOS NANOESTRUCTURADOS DE TIO2 MODIFICADOS CON DENDRÍMEROS PAMAM PARA APLICACIONES EN DISPOSITIVOS DE TRANSDUCCIÓN DE ENERGÍA QUÍMICA EN ELECTRICIDAD, 2010.
- 41. B.E. Hayden, D. V. Malevich, D. Pletcher, *Electrochem. Commun.*, 3 (2001) 390–394.
- 42. S.H. Kang, J. Kim, Y. Sung, *Electrochim. Acta*, 52 (2007) 5242–5250.
- 43. Č. Donik, A. Kocijan, *Mater. Tehnol.*, 48 (2014) 937–942.
- 44. I. Saeki, T. Saito, R. Furuichi, H. Konno, T. Nakamura, K. Mabuchi, M. Itoh, *Corros. Sci.*, 40 (1998) 1295–1305.
- 45. K. Nomura, Y. Ujihira, J. Mater. Sci., 25 (1990) 1745–1750.
- 46. H. Tang, K. Prasad, R. Sanjinès, P.E. Schmid, F. Lévy, J. Appl. Phys., 75 (1994) 2042–

2047.

- V.H. Castrejón-Sánchez, E. Camps, M. Camacho-López, *Superf. y Vacio*, 27 (2014) 88– 92.
- 48. O. Frank, M. Zukalova, B. Laskova, J. Kürti, J. Koltai, L. Kavan, *Phys. Chem. Chem. Phys.*, 14 (2012) 14567–14572.
- 49. H.L. Ma, J.Y. Yang, Y. Dai, Y.B. Zhang, B. Lu, G.H. Ma, *Appl. Surf. Sci.*, 253 (2007) 7497–7500.
- 50. L.J. Hardwick, M. Holzapfel, P. Novák, L. Dupont, E. Baudrin, *Electrochim. Acta*, 52 (2007) 5357–5367.
- 51. T. Jawhari, A. Roid, J. Casado, *Carbon N. Y.*, 33 (1995) 1561–1565.
- 52. R.L. Higginson, C.P. Jackson, E.L. Murrell, P.A.Z. Exworthy, R.J. Mortimer, D.R. Worrall, G.D. Wilcox, *Mater. High Temp.*, 32 (2015) 113–117.
- 53. A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, N.S. Mcintyre, *Wiley Interfacescience* (2004) 1564–1574.
- 54. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, *Appl. Surf. Sci.*, 257 (2011) 2717–2730.
- 55. J. Wang, J. Wang, J. Ren, H. Yao, L. Zhang, J. Wang, (2018) 10–19.
- 56. R.K. Sahu, D. Mukherjee, J.P. Tiwari, T. Mishra, S.K. Roy, L.C. Pathak, (2009).
- 57. B. Chaitongrat, S. Chaisitsak, IEEE SENSORS (2015) 3–6.
- 58. J. Haber, J. Stoch, L. Ungier, J. Electron Spectros. Relat. Phenomena, 9 (1976) 459-467.
- 59. Y. Zhong, Y. Ma, Q. Guo, J. Liu, Y. Wang, M. Yang, H. Xia, Nat. Publ. Gr. (2017) 1–9.
- J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, *Chem. Commun.*, 50 (2014) 13971–13974.
- 61. V. V Atuchin, V.G. Kesler, N. V Pervukhina, Z. Zhang, *J. Electron Spectrosc.*, 152 (2006) 18–24.
- 62. H. Zhang, X. Shi, A. Tian, L. Wang, C. Liu, Appl. Surf. Sci., 436 (2018) 579–584.
- 63. Y. Xu, S. Wu, P. Wan, J. Sun, Z.D. Hood, *RSC Adv.*, 7 (2017) 32461–32467.
- 64. F. Teng, G. Zhang, Y. Wang, C. Gao, L. Chen, P. Zhang, Z. Zhang, E. Xie, *Appl. Surf. Sci.*, 320 (2014) 703–709.
- 65. G.B. et al S.Permpoon, M.Fallet, (2005) 127–136.
- 66. K.L. Syres, A.G. Thomas, W.R. Flavell, B.F. Spencer, F. Bondino, M. Malvestuto, A. Preobrajenski, M. Gra, *Phys. Chem. Chem. Phys.*, 2 (2012).
- 67. N. Kruse, S. Chenakin, "Applied Catal. A, Gen., 391 (2011) 367–376.

- 68. P. Krishnan, M. Liu, P.A. Itty, Z. Liu, V. Rheinheimer, Nat. Publ. Gr. (2017) 1–11.
- 69. A. Surenjan, B. Sambandam, T. Pradeep, L. Philip, *Biochem. Pharmacol.*, 5 (2017) 757–767.
- 70. J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild, K.R. Hallam, *Diam. Relat. Mater.*, 12 (2003) 974–978.
- 71. R. and S.S. J.C LAscovich, Giorgi, Appl. Surf. Sci., 47 (1991) 17–21.
- 72. B. Bharti, S. Kumar, H.N. Lee, R. Kumar, *Sci. Rep.*, 6 (2016) 1–12.
- 73. Y. Xu, S. Wu, P. Wan, J. Sun, Z.D. Hood, *RSC Adv.*, 7 (2017) 32461–32467.
- 74. H. Kozuka, Y. Takahashi, G. Zhao, T. Yoko, *Thin Solid Films*, 358 (2000) 172–179.
- 75. V.N. Kuznetsov, V.K. Ryabchuk, A. V. Emeline, R. V. Mikhaylov, A. V. Rudakova, N. Serpone, *Chem. Mater.*, 25 (2013) 170–177.
- V.N. Kuznetsov, A. V. Emeline, A. V. Rudakova, M.S. Aleksandrov, N.I. Glazkova, V.A. Lovtcius, G. V. Kataeva, R. V. Mikhaylov, V.K. Ryabchuk, N. Serpone, *J. Phys. Chem. C*, 117 (2013) 25852–25864.
- 77. P. Mallick, B.N. Dash, Nanosci. Nanotechnol., 3 (2013) 130–134.
- 78. R.A. Bepari, P. Bharali, B.K. Das, J. Saudi Chem. Soc., 21 (2017) S170–S178.
- 79. A.D. Cross, R.A. Jones, AN INTRODUCTION TO INFRA-RED SPECTROSCOPY, (n.d.).
- 80. B.P. Keeney, K. Hara, A. Kudo et al *Electrochim. Acta*, 5 (2017) 195–202.
- 81. J.E. Castle, T. Surface, S. Materials, (2008) 37-41.
- 82. R.O. Adams, R.O. Adams, 12 (2014) 11–18.
- 83. D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, R. Dormoy, *Surf. Sci.*, 254 (1991) 81–89.
- 84. B.Z. Hao, Y.W. Ang, H.G. Uo, J.W. Ang, Z.J. Iao, 25 (2007) 1–6.
- Z. Sohrabijam, A. Zamanian, M. Saidifar, A. Nouri, *Procedia Mater. Sci.*, 11 (2015) 282– 286.
- 86. A.M. Jubb, H.C. Allen, ACS Appl. Mater. Interfaces, 2 (2010)
- 87. L. Liu, H. Zhao, J.M. Andino, Y. Li, ACS Appl. Mater. Interfaces (2012).
- 88. R. Mueller, H.K. Kammler, K. Wegner, S.E. Pratsinis, *Langmuir* (2003) 160–165.
- 89. V. Novák, P. Raška, D. Matýsek, B. Kostura, *J. Solid State Electrochem.*, 22 (2018) 3457–3466.
- 90. K. Shimizu, K. Tschulik, R.G. Compton, *Chem. Sci.*, 7 (2016) 1408–1414.
- 91. R.M. Torresi, O.R. Cámara, C.P. De Pauli, M.C. Giordano, *Electrochim. Acta*, 32 (1987)

1291-1301.

- 92. J. Do Kim, S. II Pyun, M. Seo, *Electrochim. Acta*, 48 (2003) 1123–1130.
- 93. H. Pelouchova, P. Janda, J. Weber, L. Kavan, J. Electroanal. Chem., 566 (2004) 73-83.
- 94. T. Ohtsuka, J. Electrochem. Soc., 134 (2006) 2406.
- 95. A. Lasia, Electrochemical Impedance Spectroscopy, (2007).
- 96. A.J. Vadim F. Lvovich Wiley, Applications to Electrochemical and Dielectric Phenomena, (2012).
- 97. J. Bisquert, F. Fabregat-santiago, S. Ferriols, P. Bogdanoff, E.C. Pereira, S.P. Brazil, (2000) 2287–2298.
- 98. F. Fabregat-santiago, A. Compte, J. Bisquert, A. Compte, 1 (1999) 429–435.
- 99. F. Cao, G. Oskam, P.C. Searson, J.M. Stipkala, T.A. Heimer, F. Farzad, G.J. Meyer, *J. Phys. Chem.*, 99 (1995) 11974–11980.
- 100. S.H. Kang, J.Y. Kim, Y. Kim, H.S. Kim, Y.E. Sung, *J. Phys. Chem. C*, 111 (2007) 9614– 9623.
- 101. J.M. Peralta-Hernández, J. Manríquez, Y. Meas-Vong, F.J. Rodríguez, T.W. Chapman, M.I. Maldonado, L.A. Godínez, *J. Hazard. Mater.*, 147 (2007) 588–593.
- 102. B.P. Keeney, K. Hara, A. Kudo et al *Electrochim. Acta*, 5 (2017) 195–202.
- 103. Q. Wang, X. Wang, C. Wu, Y. Cheng, Q. Sun, H. Yu, J. CO2 Util., 26 (2018) 425–433.
- 104. J. Yuan, L. Liu, R.R. Guo, S. Zeng, H. Wang, J.X. Lu, *Catalysts*, 7 (2017).
- Y. Song, R. Peng, D.K. Hensley, P. V. Bonnesen, L. Liang, Z. Wu, H.M. Meyer, M. Chi, C. Ma, B.G. Sumpter, A.J. Rondinone, *ChemistrySelect*, 1 (2016) 6055–6061.
- 106. Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, *Chem*, 3 (2017) 560–587.
- 107. K.D. Yang, C.W. Lee, K. Jin, S.W. Im, K.T. Nam, J. Phys. Chem. Lett., 8 (2017) 538–545.
- 108. F. Calle-vallejo, M.T.M. Koper, *Angewandte Chemie International Edition* (2013) 7282–7285.
- 109. E. Garand, T. Wende, D.J. Goebbert, R. Bergmann, G. Meijer, D.M. Neumark, K.R. Asmis, *Chem. Phys.* (2010) 849–856.
- 110. K.D. Dobson, A.J. McQuillan, *Langmuir*, 13 (1997) 3392–3396.
- 111. T.I. Yacovitch, T. Wende, L. Jiang, N. Heine, G. Meijer, D.M. Neumark, K.R. Asmis, *J. Phys. Chem. Lett.*, 2 (2011) 2135–2140.
- 112. Q. Wan, L. Spanu, G. Galli, J. Phys. Chem. B, 116 (2012) 9460–9466.
- 113. J.C.S. Wu, C.W. Huang, Front. Chem. Eng. China, 4 (2010) 120–126.

- 114. K.A.G. Deanna C. Hurum, Alexander G. Agrios, *Int. J. Photoenergy*, 2011 (2011) 4545– 4549.
- 115. G. Busca, H. Saussey, O. Saur, J.C. Lavalley, V. Lorenzelli, *Appl. Catal.*, 14 (1985) 245–260.
- 116. L.F. Liao, C.F. Lien, D.L. Shieh, M.T. Chen, J.L. Lin, *J. Phys. Chem. B*, 106 (2002) 11240–11245.
- 117. L. Mino, G. Spoto, A.M. Ferrari, J. Phys. Chem. C, 118 (2014) 25016–25026.
- 118. W. Deng, L. Zhang, L. Li, S. Chen, C. Hu, Z.J. Zhao, T. Wang, J. Gong, *J. Am. Chem. Soc.*, 141 (2019) 2911–2915.
- 119. K. Klyukin, V. Alexandrov, J. Phys. Chem. C, 121 (2017) 10476–10483.
- 120. L. Liu, C. Zhao, J.T. Miller, Y. Li, *J. Phys. Chem. C*, 121 (2017) 490–499.
- 121. D.C. Sorescu, J. Lee, W.A. Al-Saidi, K.D. Jordan, J. Chem. Phys., 137 (2012).
- 122. M.A. Henderson, *Surf. Sci.*, 419 (1999) 174–187.
- 123. M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, *Appl. Catal. B Environ.*, 23 (1999) 169– 174.
- 124. K. Hashimoto, H. Irie, A. Fujishima, *Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap.*, 44 (2005) 8269–8285.
- 125. W.H. Dong, D.D. Wu, J.M. Luo, Q.J. Xing, H. Liu, J.P. Zou, X.B. Luo, X.B. Min, H.L. Liu, S.L. Luo, C.T. Au, *J. Catal.*, 349 (2017) 218–225.
- 126. D. Chatterjee, N. Jaiswal, P. Banerjee, Eur. J. Inorg. Chem., 2014 (2014) 5856–5859.
- 127. Y.C. Kim, S. Sasaki, K. Yano, K. Ikebukuro, K. Hashimoto, I. Karube, *Anal. Chim. Acta*, 432 (2001) 59–66.
- 128. K. Rajalakshmi, V. Jeyalakshmi, K.R. Krishnamurthy, B. Viswanathan, *Indian J. Chem. -*Sect. A Inorganic, Phys. Theor. Anal. Chem., 51 (2012) 411–419.
- 129. R. Abe, K. Sayama, K. Domen, H. Arakawa, *Chem. Phys. Lett.*, 344 (2001) 339–344.
- 130. F.W. Billmeyer, Y. Chen, *Color Res. Appl.*, 10 (1985) 219–224.